We know that
The formula for combinations is
C=n!/[(n-r)!*r!]
where
n is the total number of objects you choose from
r is the number that you choose to arrange
in this problem
n=15 students
r=4 students
C=15!/[(15-4)!*4!]-----> C=15!/[11!*4!]---> (15*14*13*12*11!)/(11!*4*3*2*1)
C=(15*14*13*12)/(24)----->C=1365
the answer is
1365
Answer:
4th is the answer
Step-by-step explanation:
Answer:
The correct option is (b).
Step-by-step explanation:
If X
N (µ, σ²), then
, is a standard normal variate with mean, E (Z) = 0 and Var (Z) = 1. That is, Z
N (0, 1).
The distribution of these z-variate is known as the standard normal distribution.
The mean and standard deviation of the active minutes of students is:
<em>μ</em> = 60 minutes
<em>σ </em> = 12 minutes
Compute the <em>z</em>-score for the student being active 48 minutes as follows:

Thus, the <em>z</em>-score for the student being active 48 minutes is -1.0.
The correct option is (b).
Sorry I’m not sure but maybe you could look it up???