Answer:
-1/8
Step-by-step explanation:
lim x approaches -6 (sqrt( 10-x) -4) / (x+6)
Rationalize
(sqrt( 10-x) -4) (sqrt( 10-x) +4)
------------------- * -------------------
(x+6) (sqrt( 10-x) +4)
We know ( a-b) (a+b) = a^2 -b^2
a= ( sqrt(10-x) b = 4
(10-x) -16
-------------------
(x+6) (sqrt( 10-x) +4)
-6-x
-------------------
(x+6) (sqrt( 10-x) +4)
Factor out -1 from the numerator
-1( x+6)
-------------------
(x+6) (sqrt( 10-x) +4)
Cancel x+6 from the numerator and denominator
-1
-------------------
(sqrt( 10-x) +4)
Now take the limit
lim x approaches -6 -1/ (sqrt( 10-x) +4)
-1/ (sqrt( 10- -6) +4)
-1/ (sqrt(16) +4)
-1 /( 4+4)
-1/8
Answer:
for question 13
- 130
- 50
- 50
- 130
- 130
- 50
- 50
- 130
Step-by-step explanation:
for 14
x. 150
y. 15
z. 150
i cant say that this is totally correct but im taking a educated guess
Answer:
<I= 15degrees
Step-by-step explanation:
Using the cosine rule formulae;
j² = i²+k²-2i cos <J
j² = 37²+57² - 2(37)(57)cos <141
j² = 1369+ 3249- 4218cos <141
j² = 4618- 4218cos <141
j² = 4618-(-3,278)
j²= 7,896
j = √7,896
j = 88.86inches
Next is to get <I
i² = j²+k²-2jk cos <I
37² = 88.86²+57² - 2(88.86)(57)cos <I
1369 = 7,896.0996+ 3249- 10,130.04cos <I
1369 = 11,145.0996 - 10,130.04cos <I
1369 - 11,145.0996 = - 10,130.04cos <I
-9,776.0996=- 10,130.04cos <I
cos <I =9,776.0996 /10,130.04
cos<I = 0.96506
<I = 15.19
<I= 15degrees
1. C(x, y) = (7.3, –3.9)
2. C(x, y) = (17, –1.5)
Solution:
Question 1:
Let the points are A(3, –5) and B(19, –1).
C is the point that on the segment AB in the fraction
.
Point divides segment in the ratio formula:

Here,
and m = 3, n = 8



C(x, y) = (7.3, –3.9)
Question 2:
Let the points are A(3, –5) and B(19, –1).
C is the point that on the segment AB in the fraction
.
Point divides segment in the ratio formula:

Here,
and m = 7, n = 1



C(x, y) = (17, –1.5)
Answer:
I think it's 6 (square root) 2