C THE MODE WILL NOT CHANGE BECAUSE IT WILL STILL BE 2 . BRAINLIEST ???
The probability that exactly 6 are defective is 0.0792.
Given:
30% of the bulbs in a large box are defective.
If 12 bulbs are selected randomly from the box.
To find:
The probability that exactly 6 are defective.
Solution:
Probability of defective bulbs is:



Probability of non-defective bulbs is:



The probability that exactly 6 are defective is:





Therefore, the probability that exactly 6 are defective is 0.0792.
Learn more:
brainly.com/question/12917164
Answer:
Step-by-step explanation:
This study investigated three mathematics teachers' construction process of geometric structures using compass and straightedge. The teacher-student-tool interaction was analysed. The study consists of the use of a compass and straightedge by the teachers, the ideas of the teachers about their use, and the observations regarding the learning process during the construction of the geometric structures. A semi-structured interview was conducted with the teachers about the importance of the use of a compass and straightedge to construct geometric structures. It was found that teachers taught compass and straightedge constructions in a rote manner where learning is little more than steps in a process. The study concludes with some suggestions for the use of a compass and straightedge in mathematics classes based on the research results. SUMMARY Purpose and significance: For more than 2,000 years, the way in which geometric structures could be constructed with the help of compasses and straightedges has caught the attention of mathematicians. Nowadays, mathematics curriculums place an emphasis on the use of the compass and straightedge. The compass and straightedge is more important in constructing geometric structures than other drawing tools such as rulers and protractors. Because steps taken with a compass and straightedge cannot be seen at first glance and this situation become a problem for students. However, 'doing compass and straightedge construction early in the course helps students to understand properties of figures'
Answer:
Claim 2
Step-by-step explanation:
The Inscribed Angle Theorem* tells you ...
... ∠RPQ = 1/2·∠ROQ
The multiplication property of equality tells you that multiplying both sides of this equation by 2 does not change the equality relationship.
... 2·∠RPQ = ∠ROQ
The symmetric property of equality says you can rearrange this to ...
... ∠ROQ = 2·∠RPQ . . . . the measure of ∠ROQ is twice the measure of ∠RPQ
_____
* You can prove the Inscribed Angle Theorem by drawing diameter POX and considering the relationship of angles XOQ and OPQ. The same consideration should be applied to angles XOR and OPR. In each case, you find the former is twice the latter, so the sum of angles XOR and XOQ will be twice the sum of angles OPR and OPQ. That is, angle ROQ is twice angle RPQ.
You can get to the required relationship by considering the sum of angles in a triangle and the sum of linear angles. As a shortcut, you can use the fact that an external angle is the sum of opposite internal angles of a triangle. Of course, triangles OPQ and OPR are both isosceles.