Question: If the subspace of all solutions of
Ax = 0
has a basis consisting of vectors and if A is a matrix, what is the rank of A.
Note: The rank of A can only be determined if the dimension of the matrix A is given, and the number of vectors is known. Here in this question, neither the dimension, nor the number of vectors is given.
Assume: The number of vectors is 3, and the dimension is 5 × 8.
Answer:
The rank of the matrix A is 5.
Step-by-step explanation:
In the standard basis of the linear transformation:
f : R^8 → R^5, x↦Ax
the matrix A is a representation.
and the dimension of kernel of A, written as dim(kerA) is 3.
By the rank-nullity theorem, rank of matrix A is equal to the subtraction of the dimension of the kernel of A from the dimension of R^8.
That is:
rank(A) = dim(R^8) - dim(kerA)
= 8 - 3
= 5
Answer:
40 / 16 = 2.5
Step-by-step explanation: ur telling me this is highschool math? lol. im in middle school but took this stuff in third grade.
Define the population, decide on the sample size (aka what percentage of that population)
Part A.
Amount of money earned = Regular rate per hour *
Number of working hours
M = 12 x
Part B.
Amount of wages earned = Regular rate per hour *
Maximum number of regular working hours + Overtime rate per hour * Excess
working hours
T = 12 * 30 + 16 * y
T = 360 + 16 y
or
T = 16 y + 360
Part C.
Given T = 408, find y:
408 = 16 y + 360
y = 3 hrs
Therefore the total hours Gary worked that week
is,
<span>x + y = 30 + 3 = 33 hrs </span>
<span>(x = 30 since that is the maximum limit for regular working
hours)</span>
So to find the mean you add them all together and divide by the number of numbers there is so 11+15+19+17+23+20+17+18+21=174 and there are 10 numbers so it would be 174/10 which is 17.4 so you answer is 17.4