Answer:
3,876
Step-by-step explanation:
if you multiply 323 by 12 you get 2,876. Hope this helps!
Answer:
y = 4 sin(½ x) − 3
Step-by-step explanation:
The function is either sine or cosine:
y = A sin(2π/T x) + C
y = A cos(2π/T x) + C
where A is the amplitude, T is the period, and C is the midline.
The midline is the average of the min and max:
C = (1 + -7) / 2
C = -3
The amplitude is half the difference between the min and max:
A = (1 − -7) / 2
A = 4
The maximum is at x = π, and the minimum is at x = 3π. The difference, 2π, is half the period. So T = 4π.
Plugging in, the options are:
y = 4 sin(½ x) − 3
y = 4 cos(½ x) − 3
Since the maximum is at x = π, this must be a sine wave.
y = 4 sin(½ x) − 3
Answer:
Y=500x+75
Step-by-step explanation:
If there is 4 thousands and 7 hundreds is 4,700
Both of these conditions must be true in order for the assumption that the binomial distribution is approximately normal. In other words, if
and
then we can use a normal distribution to get a good estimate of the binomial distribution. If either np or nq is smaller than 5, then a normal distribution wouldn't be a good model to use.
side note: q = 1-p is the complement of probability p