1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivolga24 [154]
3 years ago
10

Which equation can be simplified to find the inverse of y = x2 – 7?

Mathematics
1 answer:
iragen [17]3 years ago
3 0
The last one is right
You might be interested in
I need help to solve this multi step equation please give me the correct answer
kozerog [31]

Answer:

291 - 5y

Step-by-step explanation:

x- a measure of the fourth angle

The equation

x+60+(2y+8)+(3y+1)=360\qquad|\text{combine like terms}\\\\x+(2y+3y)+(60+8+1)=360\\\\x+5y+69=360\qquad|\text{subtract 5y and 69 from both sides}\\\\x=291-5y

6 0
3 years ago
What are the solution(s) of –x2 + 2x + 3 = x2 – 2x + 3?
Leviafan [203]
-x^2+2x+3=x^2-2x+3  add x^2 to both sides

2x+3=2x^2-2x+3  subtract 2x from both sides

3=2x^2-4x+3  subtract 3 from both sides

2x^2-4x=0  factor

2x(x-2)=0

So x=0 and 2
3 0
3 years ago
Read 2 more answers
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
&gt;&gt;&gt;BIG BRAINS ONLY
Snezhnost [94]

Answer:

6

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Pleasee help me with THISS thankksssd
Taya2010 [7]

Answer:

RP/QR = OP/NO

Step-by-step explanation:

RP corresponds to OP, QR corresponds to NO. So, RP/QR = OP/ON

4 0
2 years ago
Other questions:
  • Start time: 7:15 A.M. Elapsed time: 2 hrs 20 mins End time?
    13·2 answers
  • How many 5-person committees are possible from a group of 9 people if:
    12·1 answer
  • The sum of two numbers is 3. Their difference is -5. What are the two numbers?
    10·1 answer
  • What happens to the area of a circle when the radius is doubled? (1 point) it is doubled?
    13·1 answer
  • A customer bought a car and paid $1,080 in sales tax.
    7·2 answers
  • Martha is standing on a street corner in a big city, facing south.
    9·1 answer
  • If f(-7)=14 what order pair does this represent?
    11·1 answer
  • Evaluate the expression. check all possible sets that the solution may belong in. 40-5^2
    6·2 answers
  • Help! write the set of numbers in set-builder notation: the set of all real numbers except 100​
    10·2 answers
  • What is the equation for these tables.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!