Answer: (3, 13)
Step-by-step explanation:
If we let the point be P, then AP:BP=2:1.

Let

Differentiating twice gives


When x = 0, we observe that y(0) = a₀ and y'(0) = a₁ can act as initial conditions.
Substitute these into the given differential equation:


Then the coefficients in the power series solution are governed by the recurrence relation,

Since the n-th coefficient depends on the (n - 2)-th coefficient, we split n into two cases.
• If n is even, then n = 2k for some integer k ≥ 0. Then




It should be easy enough to see that

• If n is odd, then n = 2k + 1 for some k ≥ 0. Then




so that

So, the overall series solution is


The inequality is used to solve how many hours of television Julia can still watch this week is 
The remaining hours of TV Julia can watch this week can be expressed is 3.5 hours
<h3><u>Solution:</u></h3>
Given that Julia is allowed to watch no more than 5 hours of television a week
So far this week, she has watched 1.5 hours
To find: number of hours Julia can still watch this week
<em>Let "x" be the number of hours Julia can still watch television this week</em>
"no more than 5" means less than or equal to 5 ( ≤ 5 )
Juila has already watched 1.5 hours. So we can add 1.5 hours and number of hours Julia can still watch television this week which is less than or equal to 5 hours
number of hours Julia can still watch television this week + already watched ≤ Total hours Juila can watch

Thus the above inequality is used to solve how many hours of television Julia can still watch this week.
Solving the inequality,

Thus Julia still can watch Television for 3.5 hours
You have to subtract 3.2 from 3.5 to get x. 0.3+ 3.2=2.5 so x=0.3