Answer:
Step-by-step explanation:
Hello there is no question
You should must check for an extraneous solution when the variable appears both inside and outside the absolute value expression
<h3>
What is an extraneous solution?</h3>
An extraneous solution is a solution that in obtained after completely solving an equation but it does not work in the original given equation.
You should must check for an extraneous solution when the variable appears both inside and outside the absolute value expression (Option D).
Learn more about extraneous solution: brainly.com/question/14054707
#SPJ1
Answer:
a. attached graph; zero real: 2
b. p(x) = (x - 2)(x + 3 + 3i)(x + 3 - 3i)
c. the solutions are 2, -3-3i and -3+3i
Step-by-step explanation:
p(x) = x³ + 4x² + 6x - 36
a. Through the graph, we can see that 2 is a real zero of the polynomial p. We can also use the Rational Roots Test.
p(2) = 2³ + 4.2² + 6.2 - 36 = 8 + 16 + 12 - 36 = 0
b. Now, we can use Briott-Ruffini to find the other roots and write p as a product of linear factors.
2 | 1 4 6 -36
1 6 18 0
x² + 6x + 18 = 0
Δ = 6² - 4.1.18 = 36 - 72 = -36 = 36i²
√Δ = 6i
x = -6±6i/2 = 2(-3±3i)/2
x' = -3-3i
x" = -3+3i
p(x) = (x - 2)(x + 3 + 3i)(x + 3 - 3i)
c. the solutions are 2, -3-3i and -3+3i
Answer:
34
Step-by-step explanation:
i honestly don't care i came on here to cheat but it's saying answer so here you go :)