Answer:
Orion's belt width is 184 light years
Step-by-step explanation:
So we want to find the distance between Alnitak and Mintaka, which is the Orions belts
Let the distance between the Alnitak and Mintaka be x,
Then applying cosine
c²=a²+b²—2•a•b•Cosθ
The triangle is formed by the 736 light-years and 915 light years
Artemis from Alnitak is
a = 736lightyear
Artemis from Mintaka is
b = 915 light year
The angle between Alnitak and Mintaka is θ=3°
Then,
Applying the cosine rule
c²=a²+b²—2•a•b•Cosθ
c² =736² + 915² - 2×, 736×915×Cos3
c² = 541,696 + 837,225 - 1,345,034.1477702404
c² = 33,886.85222975954
c = √33,886.85222975954
c = 184.0838184897 light years
c = 184.08 light years
So, to the nearest light year, Orion's belt width is 184 light years
Answer:
Let the Dulcina's collection be 'x'
Let the Tremaine collection be 'x-39'
x + x - 39 =129
2x = 129 +39
2x = 168
x = 168/2
x = 84
Dulcina's collection = x = 84
Tremaine's collection = x - 39 = 84 - 39 = 45
Answer:
A1=59
A2=85
A3=49
A4=no.because strait lines add up to 180 and it does not
B1=x=133andy=133
B2=53,61,and 56
B3=x=37andy= 37
B4=x=54and y=68
C1=y= 43and x=51
There is only one set of coordinates that satisfies this equations. That set is (5,0). I hope this helps!