Answer:
A graph with a set amount of numbers.
Step-by-step explanation:
Infinite means never ending and that's what most graphs are. But, a finite graph is a graph that doesn't have arrows at the end of the lines. (simplified answer) A better way of saying it is a graph with a fixed starting position and a fixed ending position. You can use this type of graph if you don't want to go over or under a certain value.
Hope this helps!
Answer:
A
Step-by-step explanation:
Two facts need to guide your answer.
One
The highest power is odd: you know this because an even power would start on the left come down do it's squiggles if had any and wind up on the right going up.
This graph comes down on the left does it's squiggles and then goes further down on the right. That's the behavior of something whose highest power is odd.
Two
The leading coefficient, the number in front of the highest power must be minus. If it was positive as in y = x^3 the graph would be the mirror image of what it is.
Argument
B and D cannot be true. The highest power is even.
C is false because the leading coefficient is + 1.
So that leave A which is the answer.
The graph is included with this answer
Answer:
<em>1</em><em>2</em>
Step-by-step explanation:
<em>here's</em><em> your</em><em> solution</em>
<em>=</em><em>></em><em> </em><em>area </em><em>of </em><em>rectangle</em><em> </em><em>=</em><em> </em><em>length</em><em>*</em><em>width</em>
<em>=</em><em>></em><em> </em><em>area </em><em>4</em><em>*</em><em>3</em><em> </em><em>=</em><em> </em><em>1</em><em>2</em><em>.</em><em>s</em><em>q</em><em>u</em><em>n</em><em>i</em><em>t</em>
<em>=</em><em>></em><em> </em><em>area </em><em>of </em><em>square</em><em> </em><em>=</em><em> </em><em>side^</em><em>2</em><em> </em>
<em>=</em><em>></em><em> </em><em>area </em><em>=</em><em> </em><em>1</em><em>.</em><em>s</em><em>q</em><em>u</em><em>n</em><em>i</em><em>t</em>
<em>=</em><em>></em><em> </em><em>Number</em><em> of</em><em> </em><em>square</em><em> </em><em>=</em><em> </em><em>area</em><em> of</em><em> rectangle</em><em>/</em><em>area</em><em> of</em><em> </em><em>square</em><em> </em>
<em>=</em><em>></em><em> </em><em>n</em><em>o </em><em>of </em><em>square</em><em> </em><em>=</em><em> </em><em>1</em><em>2</em><em>/</em><em>1</em>
<em> </em><em> </em><em>=</em><em>></em><em>. </em><em>1</em><em>2</em><em> </em>