Answer:
C) f(x) = 6.25x + 3
Step-by-step explanation:
In order to know which one of the functions could produce the results in the table we simply need to substitute the number of candy bars for x in the function and solve it to see if it provides the correct total weight shown in the table. If we do this with the functions provided we can see that the only one that provides accurate results would be
f(x) = 6.25x + 3
We can input the # of candies for x and see that it provides the exact results every time as seen in the table.
f(x) = 6.25(1) + 3 = 9.25
f(x) = 6.25(2) + 3 = 15.50
f(x) = 6.25(3) + 3 = 21.75
f(x) = 6.25(4) + 3 = 28
*The complete question is in the picture attached below.
Answer:
756πcm³
Step-by-step Explanation:
The volume of the solid shape = volume of cone + volume of the hemisphere.
==> 270πcm³ + ½(4/3*π*r³)
To calculate the volume of the hemisphere, we need to get the radius of the hemisphere = the radius of the cone.
Since volume of cone = 270πcm³, we can find r using the formula for the volume of cone.
==> Volume of cone = ⅓πr²h
⅓*π*r²*10 = 270π
⅓*10*r²(π) = 270 (π)
10/3 * r² = 270
r² = 270 * ³/10
r² = 81
r = √81
r = 9 cm
Thus, volume of hemisphere = ½(4/3*π*r³)
==> Volume of hemisphere = ½(⁴/3 * π * 9³)
= ½(972π)
Volume of hemisphere = 486πcm³
Volume of the solid shape
= volume of cone + volume of the hemisphere.
==> 270πcm³ + 486πcm³
= 756πcm³
Answer:
The coordinates are
and
.
Step-by-step explanation:
First, we have to derive an expression for translation under the assumption that each point of XYZ experiments the same translation. Vectorially speaking, translation from X to X' is defined by:
(1)
Where
is the vector translation.
If we know that
and
, then the vector translation is:



Then, we determine the coordinates for Y' and Z':






The coordinates are
and
.
Answer:
60m²
Step-by-step explanation:
my dude you need to know this. A=bh. A=10(6).
Answer:
15,35
Step-by-step explanation:
In absolute value you just remove the negative sign. Absolute value of something is always positive.