Make use of the fact that side lengths in similar triangles are proportional.
.. 30/18 = (20 +x)/20
.. 20*(30/18) -20 = x . . . . multiply by 20, subtract 20
.. 33 1/3 -20 = x . . . . . . . . evaluate the product
.. 13 1/3 = x
3.2 gallons
You see what you do is you divide 120 by 37.5 and you will get the number of gallons
If you are having trouble with ratios you can look at them as fractions. The first number being the numerator and the second number being the denominator or the other way around. When you are asked to find an equivalent ratio, you just have to find an equivalent fraction.
Answer:
The first step is to multiply by a power of 10, so the divisor is a whole number.
Step-by-step explanation:
Step-by-step explanation:
<em>giv</em><em>en</em><em> </em>
<em>
</em>
<em>in</em><em> </em><em>or</em><em>der</em><em> </em><em>to</em><em> </em><em>mak</em><em>e</em><em> </em><em>multipli</em><em>cation</em><em> </em><em>easi</em><em>er</em><em> </em><em>we</em><em> </em><em>ne</em><em>ed</em><em> </em><em>to</em><em> </em><em>cha</em><em>nge</em><em> </em><em>the</em><em> </em><em>1</em><em>.</em><em>5</em><em> </em><em>into</em><em> </em><em>a</em><em> </em><em>whol</em><em>e</em><em> </em><em>number</em><em> </em><em>form</em><em>.</em>
<em>thus</em>
<em>
</em>
<em>
</em>
<em>First</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>indic</em><em>es</em><em> </em><em>appli</em><em>ed</em><em> </em><em>there</em>
<em>=</em><em>(</em><em>1</em><em>5</em><em>×</em><em>1</em><em>0</em><em>^</em><em>3</em><em>)</em><em>(</em><em>8</em><em>×</em><em>1</em><em>0</em><em>^</em><em>8</em><em>)</em>
<em>=</em><em>(</em><em>1</em><em>5</em><em>×</em><em>8</em><em>)</em><em>(</em><em>1</em><em>0</em><em>^</em><em>3</em><em>×</em><em>1</em><em>0</em><em>^</em><em>8</em><em>)</em>
<em>=</em><em>1</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>3</em><em>+</em><em>8</em><em> </em><em>(</em><em> </em><em>firs</em><em>t</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>indic</em><em>es</em><em>,</em><em> </em><em>whi</em><em>ch</em><em> </em><em>sta</em><em>tes</em><em> </em><em>that</em><em> </em><em>,</em><em> </em><em>num</em><em>bers</em><em> </em><em>o</em><em>f</em><em> the</em><em> </em><em>sa</em><em>me</em><em> </em><em>base</em><em> </em><em>multi</em><em>plying</em><em> </em><em>each</em><em> </em><em>o</em><em>ther</em><em>,</em><em> take</em><em> </em><em>on</em><em>e</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>base</em><em> </em><em>and</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>expon</em><em>ent</em><em>.</em><em> </em><em>and</em><em> </em><em>clearly</em><em> </em><em>both</em><em> </em><em>1</em><em>5</em><em> </em><em>and</em><em> </em><em>8</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>base</em><em> </em><em>1</em><em>0</em>
<em>=</em><em>1</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em>
<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>2</em><em> </em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em>
<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em><em>+</em><em>2</em>
<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>3</em>
<em>so</em><em> </em><em>the</em><em> </em><em>a</em><em>nswer</em><em> </em><em>is</em><em> </em><em>alt</em><em> </em><em>B</em>