We begin with 1,000 fish in a lake.
Each year the population declines to 15%
Then they put back 500 fish in the lake.
The equation: (1000 * .85) +500
Answer:
The first and last graph.
General Formulas and Concepts:
<u>Algebra I</u>
- Solving systems of equations graphically
Step-by-step explanation:
In order for a systems of equations to have a solution set, the 2 graphs must intersect at at least 1 point. Here, we see that graphs 1 and 5 do not intersect each other at all.
Therefore, the rest of the graphs have solutions and #1 and #5 do no have any solutions.
Answer:
5a. -0.4 m/s²
5b. 290 m
6. 12.9 s
7. 100 s
8. 17.2 km/hr
Step-by-step explanation:
5. "While approaching a police officer parked in the median, you accelerate uniformly from 31 m/s to 27 m/s in a time of 10 s.
a. What is your acceleration?
b. How far do you travel in that time?"
Given:
v₀ = 31 m/s
v = 27 m/s
t = 10 s
Find: a and Δx
v = at + v₀
(27 m/s) = a (10 s) + (31 m/s)
a = -0.4 m/s²
Δx = ½ (v + v₀) t
Δx = ½ (27 m/s + 31 m/s) (10 s)
Δx = 290 m
6. "If a pronghorn antelope accelerates from rest in a straight line with a constant acceleration of 1.7 m/s², how long does it take for the antelope to reach a speed of 22 m/s?"
Given:
v₀ = 0 m/s
v = 22 m/s
a = 1.7 m/s²
Find: t
v = at + v₀
(22 m/s) = (1.7 m/s²) t + (0 m/s)
t = 12.9 s
7. "A 1200 kg airplane starts from rest and moves forward with a constant acceleration of 5 m/s² along a runway that is 250 m long. How long does it take the plane to travel the 250 m?"
Given:
v₀ = 0 m/s
a = 5 m/s²
Δx = 250 m
Find: t
Δx = v₀ t + ½ at²
(250 m) = (0 m/s) t + ½ (5 m/s²) t²
t = 100 s
8. "During a marathon, a runner runs the first 10 km in 0.58 hours, the next 10 km in 0.54 hours and the last 10 km in 0.62 hours. What is the average speed of the runner during that marathon?"
This isn't a constant acceleration problem, so there's no need for a chart.
Average speed = total distance / total time
v = (10 km + 10 km + 10 km) / (0.58 hr + 0.54 hr + 0.62 hr)
v = 30 km / 1.74 hr
v = 17.2 km/hr
If the two triangles are similar you can use a proportion to solve for the length of the legs.

=

Now, you would cross multiply to get
4x=18
Now, you simplify that using the division property of equality.
You end up with
x=4.5
Therefore, the legs of the triangle with a base of 9 inches will each be 4.5 units long.