Answer:
the x intercept of the function graphed below us -8,0
Step-by-step explanation:
research
Answer:
Step-by-step explanation:
From the given information, we can compute the table showing the summarized statistics of the two alloys A & B:
Alloy A Alloy B
Sample mean

Equal standard deviation

Sample size

Mean of the sampling distribution is :

Standard deviation of sampling distribution:

Hypothesis testing.
Null hypothesis: 
Alternative hypothesis: 
The required probability is:
![P(\overline X_A - \overline X_B>4|\mu_A - \mu_B) = P\Big (\dfrac{(\overline X_A - \overline X_B)-\mu_{X_A-X_B}}{\sigma_{\overline x_A -\overline x_B}} > \dfrac{4 - \mu_{X_A-\overline X_B}}{\sigma _{\overline x_A - \overline X_B}} \Big) \\ \\ = P \Big( z > \dfrac{4-0}{1.2909}\Big) \\ \\ = P(z \ge 3.10)\\ \\ = 1 - P(z < 3.10) \\ \\ \text{Using EXCEL Function:} \\ \\ = 1 - [NORMDIST(3.10)] \\ \\ = 1- 0.999032 \\ \\ 0.000968 \\ \\ \simeq 0.0010](https://tex.z-dn.net/?f=P%28%5Coverline%20X_A%20-%20%5Coverline%20X_B%3E4%7C%5Cmu_A%20-%20%5Cmu_B%29%20%3D%20P%5CBig%20%28%5Cdfrac%7B%28%5Coverline%20X_A%20-%20%5Coverline%20X_B%29-%5Cmu_%7BX_A-X_B%7D%7D%7B%5Csigma_%7B%5Coverline%20x_A%20-%5Coverline%20x_B%7D%7D%20%3E%20%5Cdfrac%7B4%20-%20%5Cmu_%7BX_A-%5Coverline%20X_B%7D%7D%7B%5Csigma%20_%7B%5Coverline%20x_A%20-%20%5Coverline%20X_B%7D%7D%20%20%20%5CBig%29%20%5C%5C%20%5C%5C%20%3D%20P%20%5CBig%28%20z%20%3E%20%5Cdfrac%7B4-0%7D%7B1.2909%7D%5CBig%29%20%5C%5C%20%5C%5C%20%3D%20P%28z%20%5Cge%203.10%29%5C%5C%20%5C%5C%20%3D%201%20-%20P%28z%20%3C%203.10%29%20%5C%5C%20%5C%5C%20%5Ctext%7BUsing%20EXCEL%20Function%3A%7D%20%5C%5C%20%5C%5C%20%20%3D%201%20-%20%5BNORMDIST%283.10%29%5D%20%20%5C%5C%20%5C%5C%20%3D%201-%200.999032%20%5C%5C%20%5C%5C%200.000968%20%5C%5C%20%5C%5C%20%5Csimeq%20%200.0010)
This implies that a minimal chance of probability shows that the difference of 4 is not likely, provided that the two population means are the same.
b)
Since the P-value is very small which is lower than any level of significance.
Then, we reject
and conclude that there is enough evidence to fully support alloy A.
Combined like terms than subtract with system of equations
750 bikes would be sold for $350
Let x represent the number of bikes sold per month and y represent the price.
550 bikes are sold at a price of $250, this can be represented by (550, 250). Also, 750 bikes is sold at a price of $150, hence it is represented by (750, 150)
A linear function is represented by:
y = mx + b
m is the slope, b is the y intercept.
Therefore the function is:

The number of bikes sold for $350 is:
350 = (1/2)x - 25
x = 750
Therefore 750 bikes would be sold for $350
Find out more at: brainly.com/question/13911928