1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tatiana [17]
3 years ago
7

Explain what Scientific Adam is and what identifying him means for science and for religion.

Biology
2 answers:
alex41 [277]3 years ago
8 0

Answer: This is talking about Y-chromosomal Adam,or Y-MRCA,which is the most recent common ancestor from whom all currently living males are descended patrilineally.

Explanation:

Most Christians believed that the entire human race actually descended from our literally first parents, Adam and Eve until the advent of Darwinian evolution. This belief has been challenged by modern scientific claims on two front:

1. The belief that true man suddenly appeared in the form of Adam has been replaced with standard theory of human evolution in which progressive changes in early primates evolved the consciouand consciousness intelligence of modern man.

2. The claim that our human species arose from a single pair of first parent has been replaced with evolution taking place in large population whose number never saw a bottleneck or reduced population of just two individuals

Tcecarenko [31]3 years ago
3 0

Answer:

The Scientific Adam refers to the most recent common ancestor of all males, given that some scientists theorize that all currently living men share the same mutations in their Y chromosome, proving that one man fathered all of humanity.

Identifying the Scientific Adam would be very important for both science and religion, as it would provide a bridge between these two often collided fields. The Scientific Adam proves the existence of the biblical Adam.

You might be interested in
Which statement describes the offspring of the F1 generation when crossing a pea plant that is true breeding for green seeds wit
ololo11 [35]

Answer:

The offspring will inherit one allele from each parent

Explanation:

Just did EDGE

7 0
3 years ago
Read 2 more answers
In which direction will air currents most likely move
exis [7]
D from the sea to the land
6 0
2 years ago
Too much insulin, too little or delayed food, exercise, alcohol, or a combination of these factors can lead to ________.
strojnjashka [21]
Can lead to diabetes
5 0
3 years ago
Why are coral reefs home to a huge diverse variety of species?
kirza4 [7]
I think the answer is A.

7 0
3 years ago
Read 2 more answers
How does oxygen and nutrients reach the deeper zones?
Aneli [31]
The amount of OXYGEN dissolved in ocean waters quickly decreases with depth
to reach a minimum at around 1000 m of depth.
phytoplanktonic organisms produce enormpus amounts of oxygen through photosynthesis.
But oxygen is also used up very quickly by animals that live in the water:
at depth (beyond the photic zone, around 100 m)
oxygen can not be produced (lack of sunlight) and whatever amount is present is rapidly consumed:
as a consequence, oxygen is quickly depleted below 100 m
in the Bathypelagic and the Abyssopelagic zones there are less and less consumers, so oxygen is not used up at the same rate it is in surface waters.
In shallow waters there is plenty of sunlight, and as a consequence
nutrients are depleted pretty quickly by the abundance of marine life.
As soon as we move below the photic zone, where animal life decreases significantly,
nutrients start to increase again, reaching a maximum by the base of the Mesopelagic zone,
essentially in coincidence with the oxygen minimum.
Past that point, nutrients decrease very slowly because only few organisms live there.
At these depths, organisms are not very abundant because of the harsh conditions for life we encounter here:
they can survive, with no light at all and under enormous hydrostatic pressure,
only because of the presence of oxygen brought at depth by deep currents (which are, again, density-driven)
and of the slightly increased amounts of nutrients.
This diagram shows the variations of oxygen and nutrients (here represented by the phosphate ion) with depth in ocean waters.
surface-water circulation
Surface-water circulation is wind-driven: the wind drags the surface waters of Earth's oceans in gigantic gyres
centered in the northern and southern Atlantic and Pacific Oceans and in the southern Indian Ocean.
These gyres rotate clockwise in the northern hemisphere and counter-clockwise in the southern hemisphere (Coriolis effect).
We have already seen that surface-water circulation is wind-driven.
Deep-water circulation instead is density-driven
This means that differences in water density cause motion of water masses at depth.
Density (mass over volume) changes with changing salinity and temperature of the ocean:
higher salinity implies higher density (and viceversa)
while higher temperatures imply lower density.
Tropical waters are warmer than polar waters because of more intense solar radiation around the equator:
as long as surface waters are warm, they can never sink to the bottom of the ocean.
Surface waters can only sink to the bottom when their density is the same or higher than that of deep waters.
This happens for instance in the North Atlantic ocean, where the formation of ice pack
causes a very cold water mass to slightly increase its salinity (and hence its density);
and all around Antarctica, where the extremely cold temperatures create similar conditions.
In the figure, pink indicates warm waters, while blue indicates cold waters.
while darker pink indicates waters that are always warm (tropical waters, between about 30°N and 30°S).
Light blue indicates the North Atlantic Deep Water, a very dense body of water that sinks to the bottom
but is still less dense then the Antarctic Bottom Water (in darker blue)
a higher amount of solar radiation reaches Earth around the equator,
where temperatures are on average higher than at higher latitudes.
We would expect that higher temperatures in ocean waters would cause
a greater amount of water evaporation, and therefore an increase in ocean salinity.
But when we observe salinity variations, we notice that the higher values
are found around 23° of latitude instead.
This occurs because of the high level of precipitation in equatorial areas, where rain water dilutes the salinity of the ocean.
Areas around the tropics, up to 30° N and S, are extremely dry (that is where most of Earth desert are found).
While the heat is still enough to cause substantial evaporation,
precipitation is extremely scarce or absent.
The consequence is an increase in salinity at these latitudes (known as the tropics).
The density of the ocean water is affected mainly by its temperature and its salinity.Temperature and salinity vary consistently with latitude only at the surface.At depth they remain essentially constant, and as a consequence the density too does not change much.In this graph we can see how density of the ocean waters,when measured at low latitudes (solid red line) increases quickly between ca. 100 m and 1000.This vertical interval of rapid density increase is defined as the pycnocline.where mixing with the atmosphere occurs.Below the mixed layer we distinguish between upper and deep waters: the Upper water coincides with the pycnoclineand is found above what is called the Deep water, where conditions are more stable
7 0
3 years ago
Other questions:
  • The classic phenotypic ration of 3:1 is the basis of which of Mendel's principles?
    6·1 answer
  • A group of similar cells that perform a similar function is called a(n)
    15·1 answer
  • Please help me with this answer please thank you
    13·1 answer
  • PLEASE ANSWER FAST 15 points
    11·2 answers
  • During photosynthesis, where do sugars like glucose eventually form in plant cell​
    10·1 answer
  • Why is geology the most important science?
    14·2 answers
  • Question 18
    14·2 answers
  • yo i need the answers idc if u look it up i cant tho im in school and they know if we look it up cuz they see our search history
    12·1 answer
  • Describe an example of another species that has undergone evolution in response to human driven changes to its environment.
    15·1 answer
  • Look at the two DNA strands below. The bottom strand has undergone a mutation. What type of mutation has occurred when comparing
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!