Answer:
-1.76
Step-by-step explanation:
Since it is in the negatives, the higher the number it is, such as -8, will be less than -2
It make it 121 instead of 118 because there is an extra number and median is the middle of a data set so the number of numbers is important.
Answer: NONE
<u>Step-by-step explanation:</u>
Consider that m is the degree of the numerator and n is the degree of the denominator.
The rules for horizontal asymptote (H.A.) are as follows:
If m > n then no H.A. (use long division to find the slant asymptote)
If m = n then H.A. is y = leading coefficient of numerator/leading coefficient of denominator
If m < n then H.A. is y = 0
Given: g(x) = 5x⁵/(x³ - 2x + 1)
--> m = 5, n = 3
Since m > n then there is no H.A.
<em>Let the common root is ‘x’</em>
<em>Let the common root is ‘x’x2 + ax + b = 0 ……(1)</em>
<em>Let the common root is ‘x’x2 + ax + b = 0 ……(1)x2 + bx + a = 0 ……(2)</em>
<em>Let the common root is ‘x’x2 + ax + b = 0 ……(1)x2 + bx + a = 0 ……(2)Subtract equation (2) from (1), we get</em>
<em>Let the common root is ‘x’x2 + ax + b = 0 ……(1)x2 + bx + a = 0 ……(2)Subtract equation (2) from (1), we get(a – b)x + (b –a) = 0</em>
<em>Let the common root is ‘x’x2 + ax + b = 0 ……(1)x2 + bx + a = 0 ……(2)Subtract equation (2) from (1), we get(a – b)x + (b –a) = 0⇒ x = (a-b)/(a-b) = 1</em>
<em>Let the common root is ‘x’x2 + ax + b = 0 ……(1)x2 + bx + a = 0 ……(2)Subtract equation (2) from (1), we get(a – b)x + (b –a) = 0⇒ x = (a-b)/(a-b) = 1⇒ x = 1</em>
<em>Let the common root is ‘x’x2 + ax + b = 0 ……(1)x2 + bx + a = 0 ……(2)Subtract equation (2) from (1), we get(a – b)x + (b –a) = 0⇒ x = (a-b)/(a-b) = 1⇒ x = 1⇒ {1 + a + b = 0} (From equation (1))</em>
<em>Let the common root is ‘x’x2 + ax + b = 0 ……(1)x2 + bx + a = 0 ……(2)Subtract equation (2) from (1), we get(a – b)x + (b –a) = 0⇒ x = (a-b)/(a-b) = 1⇒ x = 1⇒ {1 + a + b = 0} (From equation (1))⇒ a + b = –1</em>