Answer:
Given a square ABCD and an equilateral triangle DPC and given a chart with which Jim is using to prove that triangle APD is congruent to triangle BPC.
From the chart, it can be seen that Jim proved that two corresponding sides of both triangles are congruent and that the angle between those two sides for both triangles are also congruent.
Therefore, the justification to complete Jim's proof is "SAS postulate"
Step-by-step explanation:
Answer:
<em>8</em><em>+</em><em>s</em><em>+</em><em>n</em>
Step-by-step explanation:
Add s to 8=8+s
and add 3 to result=8+s+3
The capital formation of the investment function over a given period is the
accumulated capital for the period.
- (a) The capital formation from the end of the second year to the end of the fifth year is approximately <u>298.87</u>.
- (b) The number of years before the capital stock exceeds $100,000 is approximately <u>46.15 years</u>.
Reasons:
(a) The given investment function is presented as follows;

(a) The capital formation is given as follows;

From the end of the second year to the end of the fifth year, we have;
The end of the second year can be taken as the beginning of the third year.
Therefore, for the three years; Year 3, year 4, and year 5, we have;

The capital formation from the end of the second year to the end of the fifth year, C ≈ 298.87
(b) When the capital stock exceeds $100,000, we have;
![\displaystyle \mathbf{\left[1000 \cdot e^{0.1 \cdot t}} + C \right]^t_0} = 100,000](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Cmathbf%7B%5Cleft%5B1000%20%5Ccdot%20%20e%5E%7B0.1%20%5Ccdot%20t%7D%7D%20%2B%20C%20%5Cright%5D%5Et_0%7D%20%3D%20100%2C000)
Which gives;




The number of years before the capital stock exceeds $100,000 ≈ <u>46.15 years</u>.
Learn more investment function here:
brainly.com/question/25300925
Answer:
x<-1
Step-by-step explanation:
I think and hope it helps
9514 1404 393
Answer:
64/109 ≈ 0.5872
Step-by-step explanation:
41 + 23 = 64 of the events have outcome E.
An additional 35 + 10 = 45 do not.
The probability of an outcome of E is 64 out of a total of 64+45 = 109 events.
P(E) = 64/109 ≈ 0.5872