Answer:
1
Step-by-step explanation:
4^10/4^10 x 7^0 =
= 4^(10 - 10) * 1
= 4^0 * 1
= 1 * 1
= 1
A). Pi m
Explanation:
Arc length formula:
Arc length = (Ø/360°) * 2*Pi*r
Ø = given angle (degrees)
r = radius
Plug given numbers in:
(45°/360°)* 2* Pi * 4
This will give you the answer of Pi
Answer:
- -108.26
- -108.13
- -108.052
- -108.026
- -108
Step-by-step explanation:
A graphing calculator or spreadsheet is useful for making the repeated function evaluations required.
The average velocity on the interval [a,b] will be ...
v avg = (y(b) - y(a))/(b-a)
Here, all the intervals start at a=3, so the average velocity for the given values of t will be ...
v avg = (y(3+t) -y(3))/((3+t) -3) = (y(3+t) -y(3))/t
This can be computed for each of the t-values given. The results are shown in the attached table.
__
We note that the fractional part of the velocity gets smaller in proportion to t getting smaller. We expect it to go to 0 when t goes to 0.
The estimated instantaneous velocity is -108 ft/s.
_____
We can simplify the average velocity equation to ...
v avg = ((48(3+t) -26(t+3)^2) -(48(t+3) -26(3)^2)) / t
= (48t -26(t^2 +6t))/t
= 48 -26t -156
<em> v avg = -108 -26t</em>
Then the average velocity at t=0 is -108.
Answer:
![\boxed{ \frac{ \sqrt[3]{ {x}^{11} } }{4} }](https://tex.z-dn.net/?f=%20%5Cboxed%7B%20%20%5Cfrac%7B%20%5Csqrt%5B3%5D%7B%20%7Bx%7D%5E%7B11%7D%20%7D%20%7D%7B4%7D%20%7D%20)
Step-by-step explanation:
![= > \frac{ {x}^{4} }{ \sqrt[3]{64x} } \\ \\ = > \frac{ {x}^{4} }{ {(64x)}^{ \frac{1}{3} } } \\ \\ = > \frac{ {x}^{4} }{ ({64}^{ \frac{1}{3} } )\times ({x}^{ \frac{1}{3} } )} \\ \\ = > \frac{ {x}^{4} }{ ({( {4}^{3} )}^{ \frac{1}{3} }) \times( {x}^{ \frac{1}{3} } )} \\ \\ = > \frac{ {x}^{4} }{ ({4}^{ \cancel{3} \times \frac{1}{ \cancel{3}} } ) \times( {x}^{ \frac{1}{3} } )} \\ \\ = > \frac{ {x}^{4} }{4 {x}^{ \frac{1}{3} } } \\ \\ = > \frac{ {x}^{4 - \frac{1}{3} } }{4} \\ \\ = > \frac{ {x}^{ \frac{12 - 1}{3} } }{4} \\ \\ = > \frac{ {x}^{ \frac{11}{3} } }{4} \\ \\ = > \frac{ \sqrt[3]{ {x}^{11} } }{4}](https://tex.z-dn.net/?f=%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%7D%20%7D%7B%20%5Csqrt%5B3%5D%7B64x%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%7D%20%7D%7B%20%7B%2864x%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%7D%20%7D%7B%20%28%7B64%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%29%5Ctimes%20%20%28%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%29%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%7D%20%7D%7B%20%28%7B%28%20%7B4%7D%5E%7B3%7D%20%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%29%20%5Ctimes%28%20%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%29%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%7D%20%7D%7B%20%28%7B4%7D%5E%7B%20%5Ccancel%7B3%7D%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B%20%5Ccancel%7B3%7D%7D%20%7D%20%29%20%5Ctimes%28%20%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%29%7D%20%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%7D%20%7D%7B4%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%20-%20%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%7B4%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B%20%5Cfrac%7B12%20-%201%7D%7B3%7D%20%7D%20%7D%7B4%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B%20%5Cfrac%7B11%7D%7B3%7D%20%7D%20%7D%7B4%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%20%5Cfrac%7B%20%5Csqrt%5B3%5D%7B%20%7Bx%7D%5E%7B11%7D%20%7D%20%7D%7B4%7D%20)
The corrected parts of the question has been attached to this answer.
Answer:
A) Probability that the error is less than 0.2 mm; P(X < 0.2) = 0.0272
B) Mean Error (E(X)) = 0.6
C) Variance Error (V(X)) = 0.04
D) Answer properly written in attachment (Page 2)
E) P(0<X<0.8) = 0.8192
Step-by-step explanation:
The probability density function of X is;
f(x) = { 12(x^(2) −x^(3) ; 0<x<1
So, due to the integral symbol and for clarity sake, i have attached all the explanations for answers A - D.
E) The probability that the specification for the error to be between 0 to 0.8 mm is met will be;
P(0<X<0.8) = F(0.8) − F(0) =12([(0.8)^(3)] /3] −[(0.8)^(4)]/4]
= 0.8192
So, the probability is 0.8192.