1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paladinen [302]
3 years ago
7

Please solve!!!!!!!!​

Mathematics
1 answer:
Naily [24]3 years ago
7 0

Answer:

<h2>hope it helps you see the attachment for further information .......</h2>

You might be interested in
If g=77cm and h=85cm what is the length of f
umka2103 [35]
The first thing you need to do is add and then subtract
5 0
3 years ago
Solve this please help me
densk [106]

Answer:

1/2 or 0.5

Hope it helps!

7 0
3 years ago
Read 2 more answers
9. What coordinates will a point (x, y) reflected over the x-axis have?
Charra [1.4K]
The answer to your question is c
7 0
3 years ago
IXL!! I WILL ADD BRAINLIST!
klio [65]

Answer:

-3,3.1, 3 2/10

Step-by-step explanation:

When you are putting different numbers from least to greatest, you need to put them in the same form...

First things first we should put -3 wayy up front. negative numbers are worth less than positive numbers.

Then we need to turn 3 2/10 into a decimal.

3 2/10 -------> 3.2

3.2 is more than 3.1

Thus, the order is

-3,3.1, 3 2/10

Hope this helps and have a nice day.

8 0
3 years ago
Read 2 more answers
The Wall Street Journal Corporate Perceptions Study 2011 surveyed readers and asked how each rated the Quality of Management and
natali 33 [55]

Answer:

a)\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03

p_v = P(\chi^2_{4} >17.03)=0.0019

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

b)

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

Step-by-step explanation:

A chi-square goodness of fit test "determines if a sample data matches a population".

A chi-square test for independence "compares two variables in a contingency table to see if they are related. In a more general sense, it tests to see whether distributions of categorical variables differ from each another".

Assume the following dataset:

Quality management        Excellent      Good     Fair    Total

Excellent                                40                35         25       100

Good                                      25                35         10         70

Fair                                         5                   10          15        30

Total                                       70                 80         50       200

Part a

We need to conduct a chi square test in order to check the following hypothesis:

H0: There is independence between the two categorical variables

H1: There is association between the two categorical variables

The level of significance assumed for this case is \alpha=0.05

The statistic to check the hypothesis is given by:

\chi^2 = \sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}

The table given represent the observed values, we just need to calculate the expected values with the following formula E_i = \frac{total col * total row}{grand total}

And the calculations are given by:

E_{1} =\frac{70*100}{200}=35

E_{2} =\frac{80*100}{200}=40

E_{3} =\frac{50*100}{200}=25

E_{4} =\frac{70*70}{200}=24.5

E_{5} =\frac{80*70}{200}=28

E_{6} =\frac{50*70}{200}=17.5

E_{7} =\frac{70*30}{200}=10.5

E_{8} =\frac{80*30}{200}=12

E_{9} =\frac{50*30}{200}=7.5

And the expected values are given by:

Quality management        Excellent      Good     Fair       Total

Excellent                                35              40          25         100

Good                                      24.5           28          17.5        85

Fair                                         10.5            12           7.5         30

Total                                       70                 80         65        215

And now we can calculate the statistic:

\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03

Now we can calculate the degrees of freedom for the statistic given by:

df=(rows-1)(cols-1)=(3-1)(3-1)=4

And we can calculate the p value given by:

p_v = P(\chi^2_{4} >17.03)=0.0019

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

Part b

We can find the probabilities that Quality of Management and the Reputation of the Company would be the same like this:

Let's define some notation first.

E= Quality Management excellent     Ex=Reputation of company excellent

G= Quality Management good     Gx=Reputation of company good

F= Quality Management fait     Ex=Reputation of company fair

P(EΛ Ex) =40/215=0.186

P(GΛ Gx) =35/215=0.163

P(FΛ Fx) =15/215=0.0697

If we have dependence then the conditional probabilities would be higher values.

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

7 0
4 years ago
Other questions:
  • A light blinks 18 times in 4 minutes. At that rate how many times will it blink in 6 minutes
    9·2 answers
  • Alyssa rode her bicycle 14.2 miles in 0.8 hours. What is the average number of miles she rode per hour
    10·1 answer
  • Are these(4,1) 1,-3) (2,0) solutions to this graph?
    8·1 answer
  • Help me plz ASAP!! Will mark Brainliest if you figure it out! 10 points!
    10·2 answers
  • Sum of two numbers is 20 their difference is 118
    15·1 answer
  • Calculate the simple interest paid on a loan of $544 at 3% for three months.
    14·1 answer
  • Solve the inequality: 9x &gt; 18
    15·2 answers
  • 3/6 is equivalent to
    9·1 answer
  • GIVING BRAINLIEST FOR SIMPLE 7TH GRADE MATH PROBLEM.
    6·1 answer
  • the perimeter of a square piece of confetti is 28 mm. how long is each side of the piece of confetti?​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!