Answer:
24
Step-by-step explanation:
Choice C for problem 6 is correct. The two angles (65 and 25) add to 90 degrees, proving they are complementary angles.
===========================================
The answer to problem 7 is also choice C and here's why
To find the midpoint, we add up the x coordinates and divide by 2. The two points A(-5,3) and B(3,3) have x coordinates of -5 and 3 respectively. They add to -5+3 = -2 which cuts in half to get -1. This means C has to be the answer as it's the only choice with x = -1 as an x coordinate.
Let's keep going to find the y coordinate of the midpoint. The points A(-5,3) and B(3,3) have y coordinates of y = 3 and y = 3, they add to 3+3 = 6 which cuts in half to get 3. The midpoint has the same y coordinate as the other two points
So that is why the midpoint is (-1,3)
Measure angle EFG = 15 degrees
Measure angle GFH = 15 degrees
Answer:

Step-by-step explanation:
<u>Geometric Sequences</u>
There are two basic types of sequences: arithmetic and geometric. The arithmetic sequences can be recognized because each term is found as the previous term plus a fixed number called the common difference.
In the geometric sequences, each term is found by multiplying (or dividing) the previous term by a fixed number, called the common ratio.
We are given the sequence:
112, -28, 7, ...
It's easy to find out this is a geometric sequence because the signs of the terms are alternating. If it was an arithmetic sequence, the third term should be negative like the second term.
Let's find the common ratio by dividing each term by the previous term:

Testing with the third term:

Now we're sure it's a geometric sequence with r=-1/4, we use the general equation for the nth term:


we know that
the standard form of the equation of the circle is

where
(h,k) is the center of the circle
r is the radius of the circle
In this problem we have

<u>Convert to standard form</u>
Group terms that contain the same variable, and move the constant to the opposite side of the equation

Complete the square twice. Remember to balance the equation by adding the same constants to each side.


Rewrite as perfect squares


the center of the circle is 
the radius of the circle is 
therefore
<u>the answer is</u>
the radius of the circle is 