In a function, each domain element can have at most one range element. So we'll have to remove one of the links from 3. Either one can be removed, since it is OK for two domain elements to map to the same range element (as is the case for 3->b and 4->b).
This is all very theoretical, but here is a real life example.
Take f(x) = x²
You probably know that both f(2) and f(-2) is 4.
There 2 and -2 are in the domain, 4 is in the range.
Answer:
<5=39
Step-by-step explanation:
<2=48
<3=93
<2 and <4 are equal to each other because they are alternate interior angles
93+48=141
180-141=39
452÷8= 56.5
56 remainder 5
Answer:
The solution of the system of equations is, (1,-1,2)
Step-by-step explanation:
Given system equation;
x + 5y - 3z = -10
-5x + 6y – 5z = -21
-x + 8y - 8z = -25
Matrix form is written as;
![\left[\begin{array}{ccc}1&5&-3\\-5&6&-5\\-1&8&-8\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}-10\\-21\\-25\end{array}\right] \\\\\\det. = 1\left[\begin{array}{cc}\\6&-5\\8&-8\end{array}\right] -5\left[\begin{array}{cc}\\-5&-5\\-1&-8\end{array}\right] -3\left[\begin{array}{cc}\\-5&6\\-1&8\end{array}\right] \\\\\\det. = 1(-8) -5(35)-3(-34)= -8 - 175+ 102 = -81](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%265%26-3%5C%5C-5%266%26-5%5C%5C-1%268%26-8%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-10%5C%5C-21%5C%5C-25%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cdet.%20%3D%201%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5C%5C6%26-5%5C%5C8%26-8%5Cend%7Barray%7D%5Cright%5D%20-5%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5C%5C-5%26-5%5C%5C-1%26-8%5Cend%7Barray%7D%5Cright%5D%20-3%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5C%5C-5%266%5C%5C-1%268%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cdet.%20%3D%201%28-8%29%20-5%2835%29-3%28-34%29%3D%20-8%20-%20175%2B%20102%20%3D%20-81)
Cofactor;
![First \ row \left[\begin{array}{cc}+\\ 6&-5\\\ 8&-8\end{array}\right \left\begin{array}{cc}-\\ -5&-5\\-1&-8\end{array}\right \left\begin{array}{cc}+\\-5&6\\-1&8\end{array}\right] = [-8 \ \ -35 \ \ -34]\\\\\\\ Second \ row \left[\begin{array}{cc}-\\ 5&-3\\\ 8&-8\end{array}\right \left\begin{array}{cc}+\\ 1&-3\\-1&-8\end{array}\right \left\begin{array}{cc}-\\1&5\\-1&8\end{array}\right] = [16\ \ -11 \ \ -13]\\\\\\](https://tex.z-dn.net/?f=First%20%5C%20row%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C%206%26-5%5C%5C%5C%208%26-8%5Cend%7Barray%7D%5Cright%20%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D-%5C%5C%20-5%26-5%5C%5C-1%26-8%5Cend%7Barray%7D%5Cright%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C-5%266%5C%5C-1%268%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5B-8%20%20%5C%20%5C%20-35%20%5C%20%5C%20-34%5D%5C%5C%5C%5C%5C%5C%5C%20Second%20%5C%20row%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-%5C%5C%205%26-3%5C%5C%5C%208%26-8%5Cend%7Barray%7D%5Cright%20%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C%201%26-3%5C%5C-1%26-8%5Cend%7Barray%7D%5Cright%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D-%5C%5C1%265%5C%5C-1%268%5Cend%7Barray%7D%5Cright%5D%20%20%3D%20%5B16%5C%20%5C%20-11%20%5C%20%5C%20-13%5D%5C%5C%5C%5C%5C%5C)
![Third \ row \left[\begin{array}{cc}+\\ 5&-3\\\ 6&-5\end{array}\right \left\begin{array}{cc}-\\ 1&-3\\-5&-5\end{array}\right \left\begin{array}{cc}+\\1&5\\-5&6\end{array}\right]= [-7 \ \ 20\ \ 31]](https://tex.z-dn.net/?f=Third%20%5C%20row%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C%205%26-3%5C%5C%5C%206%26-5%5Cend%7Barray%7D%5Cright%20%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D-%5C%5C%201%26-3%5C%5C-5%26-5%5Cend%7Barray%7D%5Cright%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C1%265%5C%5C-5%266%5Cend%7Barray%7D%5Cright%5D%3D%20%5B-7%20%5C%20%20%5C%2020%5C%20%5C%2031%5D)
![\left[\begin{array}{ccc}-8&-35&-34\\16&-11&-13\\-7&20&31\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%26-35%26-34%5C%5C16%26-11%26-13%5C%5C-7%2620%2631%5Cend%7Barray%7D%5Cright%5D)
![inverse \ matrix =-\frac{1}{81} \left[\begin{array}{ccc}-8&16&-7\\-35&-11&20\\-34&-13&31\end{array}\right] \\\\\\](https://tex.z-dn.net/?f=inverse%20%5C%20matrix%20%3D-%5Cfrac%7B1%7D%7B81%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%2616%26-7%5C%5C-35%26-11%2620%5C%5C-34%26-13%2631%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C)
Solution of the matrix:
![\left[\begin{array}{c}x\\y\\z\end{array}\right] = -\frac{1}{81} \left[\begin{array}{ccc}-8&16&-7\\-35&-11&20\\-34&-13&31\end{array}\right] X \left[\begin{array}{c}-10\\-21\\-25\end{array}\right] = \left[\begin{array}{c}\frac{-8*-10 }{-81 } +\frac{16*-21 }{-81 } + \frac{-7*-25 }{-81 }\\\\\frac{-35*-10 }{-81 } +\frac{-11*-21 }{-81 }+ \frac{20*-25 }{-81 }\\\\\frac{-34*-10 }{-81 }+ \frac{-13*-21 }{-81 }+ \frac{31*-25 }{-81 }\end{array}\right] \\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20-%5Cfrac%7B1%7D%7B81%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%2616%26-7%5C%5C-35%26-11%2620%5C%5C-34%26-13%2631%5Cend%7Barray%7D%5Cright%5D%20%20X%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-10%5C%5C-21%5C%5C-25%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B-8%2A-10%20%7D%7B-81%20%7D%20%2B%5Cfrac%7B16%2A-21%20%7D%7B-81%20%7D%20%2B%20%5Cfrac%7B-7%2A-25%20%7D%7B-81%20%7D%5C%5C%5C%5C%5Cfrac%7B-35%2A-10%20%7D%7B-81%20%7D%20%2B%5Cfrac%7B-11%2A-21%20%7D%7B-81%20%7D%2B%20%5Cfrac%7B20%2A-25%20%7D%7B-81%20%7D%5C%5C%5C%5C%5Cfrac%7B-34%2A-10%20%7D%7B-81%20%7D%2B%20%5Cfrac%7B-13%2A-21%20%7D%7B-81%20%7D%2B%20%5Cfrac%7B31%2A-25%20%7D%7B-81%20%7D%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C)
![\left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}\frac{-81}{-81} \\\\\frac{81}{-81} \\\\\frac{-162}{-81} \end{array}\right] = \left[\begin{array}{c}1\\-1\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B-81%7D%7B-81%7D%20%5C%5C%5C%5C%5Cfrac%7B81%7D%7B-81%7D%20%5C%5C%5C%5C%5Cfrac%7B-162%7D%7B-81%7D%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C-1%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
Therefore, the correct option is (1,-1,2)
Answer:
6/8, 9/12, and 15/20
Step-by-step explanation:
just do 3 divided by 4 (3/4) and it equals 0.75 then do each and everyone like 6 divided by 8 (6/8) so it equals 0.75