Given the measure of an acute angle in a right triangle, we can tell the ratios of the lengths of the triangle's sides relative
to that acute angle.
Here are the approximate ratios for angle measures 55\degree55°55, degree, 65\degree65°65, degree, and 75\degree75°75, degree.
Angle 55\degree55°55, degree 65\degree65°65, degree 75\degree75°75, degree
\dfrac{\text{adjacent leg length}}{\text{hypotenuse length}}
hypotenuse length
adjacent leg length
start fraction, start text, a, d, j, a, c, e, n, t, space, l, e, g, space, l, e, n, g, t, h, end text, divided by, start text, h, y, p, o, t, e, n, u, s, e, space, l, e, n, g, t, h, end text, end fraction 0.570.570, point, 57 0.420.420, point, 42 0.260.260, point, 26
\dfrac{\text{opposite leg length}}{\text{hypotenuse length}}
hypotenuse length
opposite leg length
start fraction, start text, o, p, p, o, s, i, t, e, space, l, e, g, space, l, e, n, g, t, h, end text, divided by, start text, h, y, p, o, t, e, n, u, s, e, space, l, e, n, g, t, h, end text, end fraction 0.820.820, point, 82 0.910.910, point, 91 0.970.970, point, 97
\dfrac{\text{opposite leg length}}{\text{adjacent leg length}}
adjacent leg length
opposite leg length
start fraction, start text, o, p, p, o, s, i, t, e, space, l, e, g, space, l, e, n, g, t, h, end text, divided by, start text, a, d, j, a, c, e, n, t, space, l, e, g, space, l, e, n, g, t, h, end text, end fraction 1.431.431, point, 43 2.142.142, point, 14 3.733.733, point, 73
Use the table to approximate GHGHG, H in the triangle below.
Choose 1 answer:
Choose 1 answer: