The x-intercepts and the y-intercepts of the function is that determines the graph is:
- x-intercepts = (-5,0) and (-1,0)
- y-intercepts = (0,2)
<h3>How do we graph the function y = f(x) of an absolute equation?</h3>
The function of an absolute equation can be graphed by determining the values of x-intercepts and the y-intercepts of the function.
From the given equation:
y = 2|x+3| - 4
To determine the y-intercepts, we need to set the values of x to zero, and vice versa for x-intercepts.
By doing so, the x-intercepts and the y-intercepts of the function is:
- x-intercepts = (-5,0) and (-1,0)
- y-intercepts = (0,2)
Therefore, since we know the x and y-intercepts, the graph of the absolute value can be seen as plotted below.
Learn more about determining the graph of an absolute equation here:
brainly.com/question/2166748
#SPJ1
Answer:
0.918 is the probability that the sample average sediment density is at most 3.00
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 2.80
Standard Deviation, σ = 0.85
Sample size,n = 35
We are given that the distribution of sediment density is a bell shaped distribution that is a normal distribution.
Formula:
Standard error due to sampling:

P(sample average sediment density is at most 3.00)
Calculation the value from standard normal z table, we have,
0.918 is the probability that the sample average sediment density is at most 3.00
Answer:
A
Step-by-step explanation:
I attached the solution