Answer:
exactly one, 0's, triangular matrix, product and 1.
Step-by-step explanation:
So, let us first fill in the gap in the question below. Note that the capitalized words are the words to be filled in the gap and the ones in brackets too.
"An elementary ntimesn scaling matrix with k on the diagonal is the same as the ntimesn identity matrix with EXACTLY ONE of the (0's) replaced with some number k. This means it is TRIANGULAR MATRIX, and so its determinant is the PRODUCT of its diagonal entries. Thus, the determinant of an elementary scaling matrix with k on the diagonal is (1).
Here, one of the zeros in the identity matrix will surely be replaced by one. That is to say, the determinants = 1 × 1 × 1 => 1. Thus, it is a a triangular matrix.
Answer:
2159.74
Step-by-step explanation:
you times 456 by 4 then you times that answer by the 1742%

Now multiple the coefficients and add the exponents with common bases

Now write your final expression

Hope I helped!
Slope of line = tan(120) = -tan(60) = - √3
Distance from origin = 8
Let equation be Ax+By+C=0
then -A/B=-√3, or
B=A/√3.
Equation becomes
Ax+(A/√3)y+C=0
Knowing that line is 8 units from origin, apply distance formula
8=abs((Ax+(A/√3)y+C)/sqrt(A^2+(A/√3)^2))
Substitute coordinates of origin (x,y)=(0,0) =>
8=abs(C/sqrt(A^2+A^2/3))
Let A=1 (or any other arbitrary finite value)
solve for positive solution of C
8=C/√(4/3) => C=8*2/√3 = (16/3)√3
Therefore one solution is
x+(1/√3)+(16/3)√3=0
or equivalently
√3 x + y + 16 = 0
Check:
slope = -1/√3 .....ok
distance from origin
= (√3 * 0 + 0 + 16)/(sqrt(√3)^2+1^2)
=16/2
=8 ok.
Similarly C=-16 will satisfy the given conditions.
Answer The required equations are
√3 x + y = ± 16
in standard form.
You can conveniently convert to point-slope form if you wish.