Answer:
![A=\pi\displaystyle\biggr[\frac{16}{3}-2\ln(|3|)\biggr]\approx9.8524](https://tex.z-dn.net/?f=A%3D%5Cpi%5Cdisplaystyle%5Cbiggr%5B%5Cfrac%7B16%7D%7B3%7D-2%5Cln%28%7C3%7C%29%5Cbiggr%5D%5Capprox9.8524)
Step-by-step explanation:
Use the Washer Method
where
is the outer radius and
is the inner radius.
If we sketch out the graph, we see that
intersects points
and
, which will be our bounds of integration.
Here, our outer radius will be
and our inner radius will be
.
Thus, we can compute the integral and find the volume:
![A=\pi\displaystyle\int\limits^{3}_{1} {(-2)^2-\biggr(-1-\frac{1}{x}\biggr)^2 } \, dx\\ \\A=\pi\displaystyle\int\limits^{3}_{1} {4-\biggr(1+\frac{2}{x}+\frac{1}{x^2} \biggr) } \, dx\\\\A=\pi\displaystyle\int\limits^{3}_{1} {4-1-\frac{2}{x}-\frac{1}{x^2}} \, dx\\\\A=\pi\displaystyle\int\limits^{3}_{1} {3-\frac{2}{x}-\frac{1}{x^2}} \, dx\\\\A=\pi\displaystyle\biggr[3x-2\ln(|x|)+\frac{1}{x}\biggr]\Biggr|_{1}^{3}\\](https://tex.z-dn.net/?f=A%3D%5Cpi%5Cdisplaystyle%5Cint%5Climits%5E%7B3%7D_%7B1%7D%20%7B%28-2%29%5E2-%5Cbiggr%28-1-%5Cfrac%7B1%7D%7Bx%7D%5Cbiggr%29%5E2%20%7D%20%5C%2C%20dx%5C%5C%20%5C%5CA%3D%5Cpi%5Cdisplaystyle%5Cint%5Climits%5E%7B3%7D_%7B1%7D%20%7B4-%5Cbiggr%281%2B%5Cfrac%7B2%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%20%20%5Cbiggr%29%20%7D%20%5C%2C%20dx%5C%5C%5C%5CA%3D%5Cpi%5Cdisplaystyle%5Cint%5Climits%5E%7B3%7D_%7B1%7D%20%7B4-1-%5Cfrac%7B2%7D%7Bx%7D-%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%20%5C%2C%20dx%5C%5C%5C%5CA%3D%5Cpi%5Cdisplaystyle%5Cint%5Climits%5E%7B3%7D_%7B1%7D%20%7B3-%5Cfrac%7B2%7D%7Bx%7D-%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%20%5C%2C%20dx%5C%5C%5C%5CA%3D%5Cpi%5Cdisplaystyle%5Cbiggr%5B3x-2%5Cln%28%7Cx%7C%29%2B%5Cfrac%7B1%7D%7Bx%7D%5Cbiggr%5D%5CBiggr%7C_%7B1%7D%5E%7B3%7D%5C%5C)
![A=\pi\displaystyle\biggr[\biggr(3(3)-2\ln(|3|)+\frac{1}{3}\biggr)-\biggr(3(1)-2\ln(|1|)+\frac{1}{1}\biggr)\biggr]\\\\A=\pi\displaystyle\biggr[\biggr(9-2\ln(|3|)+\frac{1}{3}\biggr)-\biggr(3+1\biggr)\biggr]\\\\A=\pi\displaystyle\biggr[\biggr(\frac{28}{3}-2\ln(|3|)\biggr)-\biggr(4\biggr)\biggr]\\A=\pi\displaystyle\biggr[\frac{16}{3}-2\ln(|3|)\biggr]\\A\approx9.8524](https://tex.z-dn.net/?f=A%3D%5Cpi%5Cdisplaystyle%5Cbiggr%5B%5Cbiggr%283%283%29-2%5Cln%28%7C3%7C%29%2B%5Cfrac%7B1%7D%7B3%7D%5Cbiggr%29-%5Cbiggr%283%281%29-2%5Cln%28%7C1%7C%29%2B%5Cfrac%7B1%7D%7B1%7D%5Cbiggr%29%5Cbiggr%5D%5C%5C%5C%5CA%3D%5Cpi%5Cdisplaystyle%5Cbiggr%5B%5Cbiggr%289-2%5Cln%28%7C3%7C%29%2B%5Cfrac%7B1%7D%7B3%7D%5Cbiggr%29-%5Cbiggr%283%2B1%5Cbiggr%29%5Cbiggr%5D%5C%5C%5C%5CA%3D%5Cpi%5Cdisplaystyle%5Cbiggr%5B%5Cbiggr%28%5Cfrac%7B28%7D%7B3%7D-2%5Cln%28%7C3%7C%29%5Cbiggr%29-%5Cbiggr%284%5Cbiggr%29%5Cbiggr%5D%5C%5CA%3D%5Cpi%5Cdisplaystyle%5Cbiggr%5B%5Cfrac%7B16%7D%7B3%7D-2%5Cln%28%7C3%7C%29%5Cbiggr%5D%5C%5CA%5Capprox9.8524)
In conclusion, the volume of the solid of revolution will be about 9.8524 cubic units. See the attached graph for a helpful visual!
Answer:
mean = 7
median = 7
range = 9
mid range = 7.5
Step-by-step explanation:
3, 5, 6, 7, 7, 9, 12
Range is the difference between the highest and lowest values of a set of observations
Range = highest value - lowest value
12 - 3 = 9
Median can be described as the number that occurs in the middle of a set of numbers that are arranged either in ascending or descending order
3, 5, 6, 7, 7, 9, 12
median = 7
Mean is the average of a set of numbers. It is determined by adding the numbers together and dividing it by the total number
Mean = sum of the numbers / total number
(6 + 12 + 5 + 7+ 7 + 3 + 9) / 7 = 7
Mid range = (highest value + lowest value) / 2
(12 + 3) / 2 = 7.5
Answer:
-116/21 or -5 11/21
Step-by-step explanation:
Answer:
a = -4, b = 3 and c = 6 (OR)
a = -4, b = -3 and c = 6
Step-by-step explanation:

Add 16 to both sides.


or 
or 
or 
Therefore, a = -4, b = 3 and c = 6 (OR)
a = -4, b = -3 and c = 6
Thanks merry Christmas to you