Answer:
a) there is s such that <u>r>s</u> and s is <u>positive</u>
b) For any <u>r>0</u> , <u>there exists s>0</u> such that s<r
Step-by-step explanation:
a) We are given a positive real number r. We need to wite that there is a positive real number that is smaller. Call that number s. Then r>s (this is equivalent to s<r, s is smaller than r) and s is positive (or s>0 if you prefer). We fill in the blanks using the bold words.
b) The last part claims that s<r, that is, s is smaller than r. We know that this must happen for all posirive real numbers r, that is, for any r>0, there is some positive s such that s<r. In other words, there exists s>0 such that s<r.
Answer:
Minimum unit cost = 5,858
Step-by-step explanation:
Given the function : C(x)=x^2−520x+73458
To find the minimum unit cost :
Take the derivative of C(x) with respect to x
dC/dx = 2x - 520
Set = 0
2x - 520
2x = 520
x = 260
To minimize unit cost, 260 engines must be produced
Hence, minimum unit cost will be :
C(x)=x^2−520x+73458
Put x = 260
C(260) = 260^2−520(260) + 73458
= 5,858
Answer:
trapazoid
Step-by-step explanation:
Answer:
103
Step-by-step explanation:
To find the volume of this storage bin, you will use the formula for volume of a cylinder and of a cone.
V = Bh (cylinder)
Pi x r^2 x h
Pi x 2^2 x 10
V = 1/3 x pi x r^2 x h
1/3 x pi x 2^2 x 3
All of these choices show correct answers!