![\bf ~~~~~~\textit{initial velocity} \\\\ \begin{array}{llll} ~~~~~~\textit{in feet} \\\\ h(t) = -16t^2+v_ot+h_o \end{array} \quad \begin{cases} v_o=\stackrel{64}{\textit{initial velocity of the object}}\\\\ h_o=\stackrel{0\qquad \textit{from the ground}}{\textit{initial height of the object}}\\\\ h=\stackrel{}{\textit{height of the object at "t" seconds}} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Binitial%20velocity%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20~~~~~~%5Ctextit%7Bin%20feet%7D%20%5C%5C%5C%5C%20h%28t%29%20%3D%20-16t%5E2%2Bv_ot%2Bh_o%20%5Cend%7Barray%7D%20%5Cquad%20%5Cbegin%7Bcases%7D%20v_o%3D%5Cstackrel%7B64%7D%7B%5Ctextit%7Binitial%20velocity%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h_o%3D%5Cstackrel%7B0%5Cqquad%20%5Ctextit%7Bfrom%20the%20ground%7D%7D%7B%5Ctextit%7Binitial%20height%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Bheight%20of%20the%20object%20at%20%22t%22%20seconds%7D%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)

Check the picture below, it hits the ground at 0 feet, where it came from, the ground, and when it came back down.
Answer:
sorry this does not factor out
Step-by-step explanation:
5 * 6 = 30
90/3 = 30
5 * 6 = 90/3 = 30
Answer:
Step-by-step explanation:
For every £2 Jan gets, Cole gets £3.
10 ÷ 2 (Jan) × 3 (Cole) = 15
<em>1172. 08 in²</em>
- <em>Step-by-step explanation:</em>
<em>Hi there !</em>
<em>A(prism) = 2(lw + lh + wh) - Ab(cylinder)</em>
<em>= 2(16*11 + 16*11 + 11*11) - πr²</em>
<em>= 2(176 + 176 + 121) - 3.14*16</em>
<em>= 2*473 - 50.4</em>
<em>= 946 - 50.24</em>
<em>= 895.76 in²</em>
<em>A(cylinder) = πr² + 2πr*h</em>
<em>= 3.14*16 + 2*3.14*4*9</em>
<em>= 50.24 + 226.08</em>
<em>= 276.32 in²</em>
<em>A(total) = 895.76in² + 276.32in² = 1172.08 in²</em>
<em>Good luck !</em>