Answer:
$385
Step-by-step explanation:
7x$40=280
3x$35=105
280+105=385
Answer:
The slope of the line is 1.3.
Hint: Click on the point (0,0) on the graph. Drag all the way up to (7,9) and stop. This should automatically create your graph that represents the relationship.
Answer:
x = -8
Step-by-step explanation:
-4(2x+3) = 2x+6-(8x+2)
Distribute
-8x-12= 2x+6-8x-2
Combine like terms
-8x-12 = -6x+4
Add 8x to each side
-8x-12 +8x = -6x+4+8x
-12 = 2x+4
Subtract 4 from each side
-12-4 = 2x+4-4
-16 = 2x
Divide each side by 2
-16/2 = 2x/2
-8 =x
let's notice something on this hyperbola, the fraction that is positive, is the fraction with the "y" variable, that simply means that the hyperbola is opening vertically, namely runs over the y-axis or it has a vertical traverse axis, which means, that, the foci will be a certain "c" distance from the center over the y-axis, well, with that mouthful, let's proceed.
![\bf \textit{hyperbolas, vertical traverse axis } \\\\ \cfrac{(y- k)^2}{ a^2}-\cfrac{(x- h)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h, k\pm a)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2 + b ^2}\\ asymptotes\quad y= k\pm \cfrac{a}{b}(x- h) \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bhyperbolas%2C%20vertical%20traverse%20axis%20%7D%20%5C%5C%5C%5C%20%5Ccfrac%7B%28y-%20k%29%5E2%7D%7B%20a%5E2%7D-%5Ccfrac%7B%28x-%20h%29%5E2%7D%7B%20b%5E2%7D%3D1%20%5Cqquad%20%5Cbegin%7Bcases%7D%20center%5C%20%28%20h%2C%20k%29%5C%5C%20vertices%5C%20%28%20h%2C%20k%5Cpm%20a%29%5C%5C%20c%3D%5Ctextit%7Bdistance%20from%7D%5C%5C%20%5Cqquad%20%5Ctextit%7Bcenter%20to%20foci%7D%5C%5C%20%5Cqquad%20%5Csqrt%7B%20a%20%5E2%20%2B%20b%20%5E2%7D%5C%5C%20asymptotes%5Cquad%20y%3D%20k%5Cpm%20%5Ccfrac%7Ba%7D%7Bb%7D%28x-%20h%29%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
![\cfrac{(y-3)^2}{1}-\cfrac{(x+2)^2}{4}=1\implies \cfrac{[y-3]^2}{1^2}-\cfrac{[x-(-2)]^2}{2^2}=1~~ \begin{cases} h=-2\\ k=3\\ a=1\\ b=2 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ c=\sqrt{a^2+b^2}\implies c=\sqrt{1+4}\implies c=\sqrt{5} \\\\\\ \stackrel{\textit{so then the foci are at}}{(-2~~,~~3\pm \sqrt{5})}\qquad \qquad \qquad \stackrel{\textit{and its vertices are at }}{(-2~~,~~3\pm 1)}\implies \begin{cases} (-2,4)\\ (-2,2) \end{cases}](https://tex.z-dn.net/?f=%5Ccfrac%7B%28y-3%29%5E2%7D%7B1%7D-%5Ccfrac%7B%28x%2B2%29%5E2%7D%7B4%7D%3D1%5Cimplies%20%5Ccfrac%7B%5By-3%5D%5E2%7D%7B1%5E2%7D-%5Ccfrac%7B%5Bx-%28-2%29%5D%5E2%7D%7B2%5E2%7D%3D1~~%20%5Cbegin%7Bcases%7D%20h%3D-2%5C%5C%20k%3D3%5C%5C%20a%3D1%5C%5C%20b%3D2%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20c%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%5Cimplies%20c%3D%5Csqrt%7B1%2B4%7D%5Cimplies%20c%3D%5Csqrt%7B5%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bso%20then%20the%20foci%20are%20at%7D%7D%7B%28-2~~%2C~~3%5Cpm%20%5Csqrt%7B5%7D%29%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Band%20its%20vertices%20are%20at%20%7D%7D%7B%28-2~~%2C~~3%5Cpm%201%29%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20%28-2%2C4%29%5C%5C%20%28-2%2C2%29%20%5Cend%7Bcases%7D)
now let's check for the asymptotes.
![\bf y=3\pm \cfrac{1}{2}[x-(-2)]\implies y=3\pm \cfrac{1}{2}(x+2) \\\\[-0.35em] ~\dotfill\\\\ y=3+ \cfrac{1}{2}(x+2)\implies y=3+\cfrac{x+2}{2}\implies y=\cfrac{6+x+2}{2} \\\\\\ y=\cfrac{x+8}{2}\implies y=\cfrac{1}{2}x+4 \\\\[-0.35em] ~\dotfill\\\\ y=3- \cfrac{1}{2}(x+2)\implies y=3-\cfrac{(x+2)}{2}\implies y=\cfrac{6-(x+2)}{2} \\\\\\ y=\cfrac{6-x-2}{2}\implies y=\cfrac{-x+4}{2}\implies y=-\cfrac{1}{2}x+2](https://tex.z-dn.net/?f=%5Cbf%20y%3D3%5Cpm%20%5Ccfrac%7B1%7D%7B2%7D%5Bx-%28-2%29%5D%5Cimplies%20y%3D3%5Cpm%20%5Ccfrac%7B1%7D%7B2%7D%28x%2B2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20y%3D3%2B%20%5Ccfrac%7B1%7D%7B2%7D%28x%2B2%29%5Cimplies%20y%3D3%2B%5Ccfrac%7Bx%2B2%7D%7B2%7D%5Cimplies%20y%3D%5Ccfrac%7B6%2Bx%2B2%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7Bx%2B8%7D%7B2%7D%5Cimplies%20y%3D%5Ccfrac%7B1%7D%7B2%7Dx%2B4%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20y%3D3-%20%5Ccfrac%7B1%7D%7B2%7D%28x%2B2%29%5Cimplies%20y%3D3-%5Ccfrac%7B%28x%2B2%29%7D%7B2%7D%5Cimplies%20y%3D%5Ccfrac%7B6-%28x%2B2%29%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7B6-x-2%7D%7B2%7D%5Cimplies%20y%3D%5Ccfrac%7B-x%2B4%7D%7B2%7D%5Cimplies%20y%3D-%5Ccfrac%7B1%7D%7B2%7Dx%2B2)