X=(-10 ) Hope this helps!!! :)
1) We calculate the volume of a metal bar (without the hole).
volume=area of hexagon x length
area of hexagon=(3√3 Side²)/2=(3√3(60 cm)²) / 2=9353.07 cm²
9353.07 cm²=9353.07 cm²(1 m² / 10000 cm²)=0.935 m²
Volume=(0.935 m²)(2 m)=1.871 m³
2) we calculate the volume of the parallelepiped
Volume of a parallelepiped= area of the section x length
area of the section=side²=(40 cm)²=1600 cm²
1600 cm²=(1600 cm²)(1 m² / 10000 cm²=0.16 m²
Volume of a parallelepiped=(0.16 m²)(2 m)=0.32 m³
3) we calculate the volume of a metal hollow bar:
volume of a metal hollow bar=volume of a metal bar - volume of a parallelepiped
Volume of a metal hollow bar=1.871 m³ - 0.32 m³=1.551 m³
4) we calculate the mass of the metal bar
density=mass/ volume ⇒ mass=density *volume
Data:
density=8.10³ kg/m³
volume=1.551 m³
mass=(8x10³ Kg/m³ )12. * (1.551 m³)=12.408x10³ Kg
answer: The mas of the metal bar is 12.408x10³ kg or 12408 kg
Answer:
x = 0.3, y = 5.3, z = 17.3
Step-by-step explanation:
Since given question is incomplete, so here is the complete table for the distance from the mean.
Temp (°F) 29 38 45 31 50 58 62
Distance from the mean 15.7 6.7 x 13.7 y 13.3 z
It's given that the mean of the data is 44.7
Since distance from the mean of a data is the absolute value of the difference of data and mean,
Therefore, distance from the mean of the data will be,
x = |44.7 - 45| = 0.3 (absolute value of the difference)
y = |44.7 - 50| = 5.3
z = |44.7 - 62| = 17.3
Answer:
(1/2)% = 0.5% =0.5/100 = 0.005
=> Option E is correct.
Hope this helps!
:)
Since
(density = mass/volume), we can get the mass/weight of the liquid by integrating the density
over the interior of the tank. This is done with the integral
![\displaystyle\int_{-1}^1\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\int_{x^2+y^2}^1(2-z^2)\,\mathrm dz\,\mathrm dy\,\mathrm dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_%7B-1%7D%5E1%5Cint_%7B-%5Csqrt%7B1-x%5E2%7D%7D%5E%7B%5Csqrt%7B1-x%5E2%7D%7D%5Cint_%7Bx%5E2%2By%5E2%7D%5E1%282-z%5E2%29%5C%2C%5Cmathrm%20dz%5C%2C%5Cmathrm%20dy%5C%2C%5Cmathrm%20dx)
which is more readily computed in cylindrical coordinates as
![\displaystyle\int_0^{2\pi}\int_0^1\int_{r^2}^1(2-z^2)r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta=\boxed{\frac{3\pi}4}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_0%5E%7B2%5Cpi%7D%5Cint_0%5E1%5Cint_%7Br%5E2%7D%5E1%282-z%5E2%29r%5C%2C%5Cmathrm%20dz%5C%2C%5Cmathrm%20dr%5C%2C%5Cmathrm%20d%5Ctheta%3D%5Cboxed%7B%5Cfrac%7B3%5Cpi%7D4%7D)