Answer:
1,4,5,7,9
Step-by-step explanation:
1
<em>Greetings from Brasil....</em>
As stated in the statement of the question, EF is a bisector of CD, so point G is the median point of CD, so CG = GD
5X - 1 = 7X - 13
X = 6
EF = EG + GF
6X - 4 = EG + 13 x = 6, so
6·6 - 4 = EG + 13
<h2>EG = 19</h2>
<em>(see attachment)</em>
Answer:
32°
Step-by-step explanation:
Given:
∠DMQ = 58º
In this circle, the radius is DM. Since AD is tangent to the circle M, at point D, and the angle between a tangent and a radius is 90°
Therefore, ∠MDQ = 90°
The total angle in a triangle is 180°. Since we have the values of ∠MDQ and ∠DMQ, ∠DQM will be calculated as:
180 = ∠DMQ + ∠MDQ + ∠DQM
Solving for ∠DQM, we have:
∠DQM = 180 - ∠DMQ - ∠MDQ
∠DQM = 180 - 90 - 58
∠DQM = 32°
The measure of ∠DQM is 32°
<span>For the plane, we have z = 5x + 9y
For the region, we first find its boundary curves' points of intersection.
x = x^4 ==> x = 0, 1.
Since x > x^4 for y in [0, 1],
The volume of the solid equals
![\int\limits^1_0 { \int\limits_{x^4}^x {(5x+9y)} \, dy } \, dx = \int\limits^1_0 {\left[5xy+ \frac{9}{2} y^2\right]_{x^4}^{x}} \, dx \\ \\ =\int\limits^1_0 {\left[\left(5x(x)+ \frac{9}{2} (x)^2\right)-\left(5x(x^4)+ \frac{9}{2} (x^4)^2\right)\right]} \, dx \\ \\ =\int\limits^1_0 {\left(5x^2+ \frac{9}{2} x^2-5x^5- \frac{9}{2} x^8\right)} \, dx =\int\limits^1_0 {\left( \frac{19}{2} x^2-5x^5- \frac{9}{2} x^8\right)} \, dx \\ \\ =\left[ \frac{19}{6} x^3- \frac{5}{6} x^6- \frac{1}{2} x^9\right]^1_0](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E1_0%20%7B%20%5Cint%5Climits_%7Bx%5E4%7D%5Ex%20%7B%285x%2B9y%29%7D%20%5C%2C%20dy%20%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5E1_0%20%7B%5Cleft%5B5xy%2B%20%5Cfrac%7B9%7D%7B2%7D%20y%5E2%5Cright%5D_%7Bx%5E4%7D%5E%7Bx%7D%7D%20%5C%2C%20dx%20%20%5C%5C%20%20%5C%5C%20%3D%5Cint%5Climits%5E1_0%20%7B%5Cleft%5B%5Cleft%285x%28x%29%2B%20%5Cfrac%7B9%7D%7B2%7D%20%28x%29%5E2%5Cright%29-%5Cleft%285x%28x%5E4%29%2B%20%5Cfrac%7B9%7D%7B2%7D%20%28x%5E4%29%5E2%5Cright%29%5Cright%5D%7D%20%5C%2C%20dx%20%20%5C%5C%20%20%5C%5C%20%3D%5Cint%5Climits%5E1_0%20%7B%5Cleft%285x%5E2%2B%20%5Cfrac%7B9%7D%7B2%7D%20x%5E2-5x%5E5-%20%5Cfrac%7B9%7D%7B2%7D%20x%5E8%5Cright%29%7D%20%5C%2C%20dx%20%3D%5Cint%5Climits%5E1_0%20%7B%5Cleft%28%20%5Cfrac%7B19%7D%7B2%7D%20x%5E2-5x%5E5-%20%5Cfrac%7B9%7D%7B2%7D%20x%5E8%5Cright%29%7D%20%5C%2C%20dx%20%5C%5C%20%20%5C%5C%20%3D%5Cleft%5B%20%5Cfrac%7B19%7D%7B6%7D%20x%5E3-%20%5Cfrac%7B5%7D%7B6%7D%20x%5E6-%20%5Cfrac%7B1%7D%7B2%7D%20x%5E9%5Cright%5D%5E1_0)

</span>