Answer:
The distance of the helicopter from the bristol is approximately 1<u>2.81 miles</u>
Step-by-step explanation:
Given:
Helicopter flies 10 miles east of bristol.
Then the helicopter flies 8 miles North before landing.
To find the direct distance between the helicopter and bristol.
Solution:
In order to find the distance of the helicopter from the bristol before landing, we will trace the path of the helicopter
The helicopter is first heading 10 miles east of bristol and then going 8 miles due north.
On tracing the path of the helicopter we find that the direct distance of the helicopter from the bristol is the hypotenuse of a right triangle formed by enclosing the path of the helicopter.
Applying Pythagorean theorem to find the hypotenuse of the triangle.



Taking square root both sides.

Thus, the distance of the helicopter from the bristol is approximately 12.81 miles
Started out with 32/32. They ate 18/32, 32-18=14; 14/32. To simplify, 7/16 was left.
Answer:

Step-by-step explanation:
Suppose at t = 0 the person is 1m above the ground and going up
Knowing that the wheel completes 1 revolution every 20s and 1 revolution = 2π rad in angle, we can calculate the angular speed
2π / 20 = 0.1π rad/s
The height above ground would be the sum of the vertical distance from the ground to the bottom of the wheel and the vertical distance from the bottom of the wheel to the person, which is the wheel radius subtracted by the vertical distance of the person to the center of the wheel.
(1)
where
is vertical distance from the ground to the bottom of the wheel,
is the vertical distance from the bottom of the wheel to the person, R = 10 is the wheel radius,
is the vertical distance of the person to the center of the wheel.
So solve for
in term of t, we just need to find the cosine of angle θ it has swept after time t and multiply it with R

Note that
is negative when angle θ gets between π/2 (90 degrees) and 3π/2 (270 degrees) but that is expected since it would mean adding the vertical distance to the wheel radius.
Therefore, if we plug this into equation (1) then
