1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Whitepunk [10]
3 years ago
6

28th term of -242, -251, -260

Mathematics
1 answer:
Vedmedyk [2.9K]3 years ago
8 0

Answer:

-485

Step-by-step explanation:

Formula

<em><u>Givens</u></em>

an = a28

n = 28

a1 = - 242

<em><u>Solution</u></em>

d = a3 - a2

d = -260 - - 251

d = -260  + 251

d = - 9

an = a1 + (n-1)d

an = -242 + (n - 1)(-9)

a28 = - 242 + 27*(-9)

a28 = - 242 - 243

a28 = - 485

You might be interested in
A student read the clock at 12:00. Then she read it again at 12:15. How many one degree turns has the minute hand made?
wolverine [178]

Answer

about 15

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
8. In a mock school election 5/7 of the students voted. There are 1095 ballots. Write and solve a equation to find the number of
mixas84 [53]
5/7 multiply by 1095 that is 782 students
8 0
2 years ago
Read 2 more answers
How to solve for -3x squared + 2y squared + 5xy - 2y + 5x squared - 3y squared when x = 0.5 and y = -1/10??
Pani-rosa [81]

Answer:

0.44

Step-by-step explanation:

-3x^2 + 2y^2 + 5xy - 2y +5x^2 - 3y^2

Combine like terms

-3x^2 + 5x^2 = 2x^2 2y^2 - 3y^2 = -1y^2

2x^2 - 1y^2 + 5xy - 2y

Now plug in the solutions Note: it is easier if you have all decimals or all fractions (-1/10=-.1

2(0.5)^2 - 1(-0.1)^2 + 5(0.5)(-0.1) - 2(-0.1)

Simplify:

0.5 - 0.01 - 0.25 + 0.2

0.5 + 0.2 - 0.01 - 0.25

0.7 - 0.26

0.44

5 0
3 years ago
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
Leon bought trail mix that cost $0.78 per pound. He paid $6.24 for the trail mix. How many pounds of trail mix did he buy?
12345 [234]
If Leon bought trail mix worth of $ 6.24, and he paid 0.78 per pound,

6.24/0.78= 8 lbs
3 0
3 years ago
Read 2 more answers
Other questions:
  • If x=3 what is the value of the expression -2x(2 x^3+3x^2-5x)
    5·1 answer
  • Hi! Can I have some help on this math question...
    13·2 answers
  • 3(x+5)&lt;=2(3-x)-1 solve the inequality
    8·1 answer
  • ???????????????????hep
    14·2 answers
  • What is 23.45 less than 56.004?
    9·1 answer
  • How can i make 6/36 into a mixed number
    8·1 answer
  • Brandon charges $8 per hour for babysitting Deborah charges $10 per hour they both worked for five hours how much money did Debo
    6·2 answers
  • PLZ answer correctly! Brainliest!
    15·1 answer
  • Which of the following determines the type of tree species found in a temperate broadleaf forest? (Select all that apply.)
    9·1 answer
  • Trying to see who would be the first to answer an easy question- <br> Right answers onlyyy
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!