Answer:
-16/13
Step-by-step explanation:
m=(y2-y1)/(x2-x1)
m=(-9-7)/(17-4)
m=-16/13
Answer:
<h2>
∠PQT = 72°</h2>
Step-by-step explanation:
According to the diagram shown, ∠OPQ = ∠OQP = 18°. If PQT is a tangent to the circle, it can be inferred that line OQ is perpendicular to line QT. Ths shows that ∠OQT = 90°.
Also from the diagram, ∠OQP + ∠PQT = ∠OQT;
∠PQT = ∠OQT - ∠OQP
Given ∠OQP = 18° and ∠OQT = 90°
∠PQT = 90°-18°
∠PQT = 72°
2: c
Step-by-step explanation:
3: a
by Supplementing each answer Into the equation
Answer: Q1 is the 2
Step-by-step explanation:
Answer:
This is always ''interesting'' If you see an absolute value, you always need to deal with when it is zero:
(x-4)=0 ===> x=4,
so that now you have to plot 2 functions!
For x<= 4: what's inside the absolute value (x-4) is negative, right?, then let's make it +, by multiplying by -1:
|x-4| = -(x-4)=4-x
Then:
for x<=4, y = -x+4-7 = -x-3
for x=>4, (x-4) is positive, so no changes:
y= x-4-7 = x-11,
Now plot both lines. Pick up some x that are 4 or less, for y = -x-3, and some points that are 4 or greater, for y=x-11
In fact, only two points are necessary to draw a line, right? So if you want to go full speed, choose:
x=4 and x= 3 for y=-x-3
And just x=5 for y=x-11
The reason is that the absolute value is continuous, so x=4 works for both:
x=4===> y=-4-3 = -7
x==4 ====> y = 4-11=-7!
abs() usually have a cusp int he point where it is =0
Step-by-step explanation: