1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
3 years ago
9

Can someone plz help me

Mathematics
1 answer:
Anni [7]3 years ago
6 0
You will add the distances and then you divide by the amount of distances you've added

example (21.3+22.1+22.2+20.9+23.6+22.8) that is 6 distances given then you would divide the total by 6

therefore your answer would be
22.15
You might be interested in
A Similar Triangles Lesson Quiz
Naddik [55]

Answer:  D. 72°

Step-by-step explanation:

3 0
2 years ago
Find the slope of the line that passes through (10,3) and (6,2)
8_murik_8 [283]

Answer:

.25

Step-by-step explanation:

y2-y1/x2-x1

m = -1 / -4 = 0.25

6 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
What is the solution of the inequality -6x-17≥8x+25
Aleksandr-060686 [28]
-6x -17> 8x + 25.
Get x on one side; Subtract 8x from both sides.
-14x -17 > 25.
Add 17 to both sides to get x by itself.
-14x>42.
Divide both sides by -14 (remember to flip the inequality when dividing by negatives).
x <_ 3 is your solution (line under the inequality).
I hope this helps!
3 0
3 years ago
Read 2 more answers
28 is 9 less than twice a number
photoshop1234 [79]

Answer:

Step-by-step explanation:

28=2x-9

37=2x

x=18.5

5 0
3 years ago
Read 2 more answers
Other questions:
  • What number is 30% of 90​
    11·2 answers
  • Cyndi bought an extra large pizza, cut into 12 pieces, for today's meeting of the mystery club. She ate 1/6 of the pizza yesterd
    5·2 answers
  • Y=6/X; X= 9 <br> what is the answer and how do you solve this?
    7·1 answer
  • PLEASE HELP ASAP!! CORRECT ANSWER ONLY PLEASE!!
    9·2 answers
  • 6) Sally wrote the number 30, 048 in expanded form.
    9·1 answer
  • Ben's making bow ties. How many 1/2 yard-long bow ties can he make if he has 18 feet of fabric
    13·1 answer
  • PLEASE HELP !!!!!!! does any one know how to write 95.417 in expanded form with multiplication
    5·1 answer
  • Is x = 3 a solution to the inequality below?<br><br> 5 ≥ x
    9·2 answers
  • Please help me find the median to this table
    5·1 answer
  • Graph the image of △UVW after a reflection over the line y=-x
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!