Answer:
infinity
Step-by-step explanation:
a) the expected value of this gamble in dollars is Infinity
i.e
expected value = 
= 
b)
When offered, most people say they would pay only less than $10 to play this game.
What are two reasons why people are willing to pay so much less than the expected value?
These people are ready to pay less than $10 to play this game due to the fact that people usually overlook the unlikely event when making decisions. In a bid to that logic, they gamble in order to double their amount of money and the probability that heads may never come is ignored by these people and they may hope for a likely event i.e a head every time they play the game.
Also, the expected value is so humongous that if and only if that the first head appears after a long series of tails which is very less certain to occur, because mostly people would think that on an average the length of a series of tails ( or heads) is somewhat near 10 or so, but definitely infinity.
Answer:
The equation is 
The value of x is 28 cookies
Step-by-step explanation:
Let
x ----> the number of cookies she baked last week
we know that
The number of cookies she baked last week multiplied by 3 minus 4 must be equal to 80 cookies
so
The linear equation that represent this situation is

solve for x

Answer:
1. x = -1.5y
2. 5 (2x-3)
3. p = 4
Step-by-step explanation:
1) Simplifying
7x + 2y + -3x + 4y = 0
Reorder the terms:
7x + -3x + 2y + 4y = 0
Combine like terms: 7x + -3x = 4x
4x + 2y + 4y = 0
Combine like terms: 2y + 4y = 6y
4x + 6y = 0
Solving
4x + 6y = 0
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-6y' to each side of the equation.
4x + 6y + -6y = 0 + -6y
Combine like terms: 6y + -6y = 0
4x + 0 = 0 + -6y
4x = 0 + -6y
Remove the zero:
4x = -6y
Divide each side by '4'.
x = -1.5y
Simplifying
x = -1.5y
2)
Common factor
10x - 15
5 (2x-3)
3) Simplifying
5p = 3p + 8
Reorder the terms:
5p = 8 + 3p
Solving
5p = 8 + 3p
Solving for variable 'p'.
Move all terms containing p to the left, all other terms to the right.
Add '-3p' to each side of the equation.
5p + -3p = 8 + 3p + -3p
Combine like terms: 5p + -3p = 2p
2p = 8 + 3p + -3p
Combine like terms: 3p + -3p = 0
2p = 8 + 0
2p = 8
Divide each side by '2'.
p = 4
Simplifying
p = 4
Answer:
im not sure sure but by the looks of it i think thats 3,6
Step-by-step explanation: