Hey there! :D
Slope intercept form: y=mx+b
4x-2y=9
Add 2y to the other side.
4x=9+2y
Subtract 9 on both sides.
4x-9=2y
Flip the equation over.
2y=4x-9 <== slope intercept form
I hope this helps!
~kaikers
Answer:
2 5/6
Step-by-step explanation:
9 5/12 - 6 7/12
We will need to borrow from the 9
8 12/12 + 5/12 - 6 7/12
8 17/12 - 6 7/12
(8-6) + (17/12 -7/12)
2 10/12
This simplifies. Divide the top and bottom of the fraction by 2
2 5/6
Answer:
D. 
Step-by-step explanation:
The given equation is

When we divide through by 4 we get;

Comparing to
y=mx+c,
The y-intercept is 
The corrrect choice is D.
Consider the operation is
.
Given:
The augmented matrix below represents a system of equations.
![\left[\left.\begin{matrix}1&0&1\\1&3&-1\\3&2&0\end{matrix}\right|\begin{matrix}-1\\-9\\-2\end{matrix}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft.%5Cbegin%7Bmatrix%7D1%260%261%5C%5C1%263%26-1%5C%5C3%262%260%5Cend%7Bmatrix%7D%5Cright%7C%5Cbegin%7Bmatrix%7D-1%5C%5C-9%5C%5C-2%5Cend%7Bmatrix%7D%5Cright%5D)
To find:
Matrix results from the operation
.
Step-by-step explanation:
We have,
![\left[\left.\begin{matrix}1&0&1\\1&3&-1\\3&2&0\end{matrix}\right|\begin{matrix}-1\\-9\\-2\end{matrix}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft.%5Cbegin%7Bmatrix%7D1%260%261%5C%5C1%263%26-1%5C%5C3%262%260%5Cend%7Bmatrix%7D%5Cright%7C%5Cbegin%7Bmatrix%7D-1%5C%5C-9%5C%5C-2%5Cend%7Bmatrix%7D%5Cright%5D)
After applying
, we get
![\left[\left.\begin{matrix}1&0&1\\-3(1)&-3(3)&-3(-1)\\3&2&0\end{matrix}\right|\begin{matrix}-1\\-3(-9)\\-2\end{matrix}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft.%5Cbegin%7Bmatrix%7D1%260%261%5C%5C-3%281%29%26-3%283%29%26-3%28-1%29%5C%5C3%262%260%5Cend%7Bmatrix%7D%5Cright%7C%5Cbegin%7Bmatrix%7D-1%5C%5C-3%28-9%29%5C%5C-2%5Cend%7Bmatrix%7D%5Cright%5D)
![\left[\left.\begin{matrix}1&0&1\\-3&-9&3\\3&2&0\end{matrix}\right|\begin{matrix}-1\\27\\-2\end{matrix}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft.%5Cbegin%7Bmatrix%7D1%260%261%5C%5C-3%26-9%263%5C%5C3%262%260%5Cend%7Bmatrix%7D%5Cright%7C%5Cbegin%7Bmatrix%7D-1%5C%5C27%5C%5C-2%5Cend%7Bmatrix%7D%5Cright%5D)
Therefore, the correct option is A.