1-first rectangle has 2ft as the length and 2ft as the width. The second rectangle has 2ft as the width and 3ft as the length.
2-THe length is add 1 starting from 2.
Answer:
12) 
11) 
10) 
9) 
8) 
7) 
6) 
5) 
4) 
3) 
2) 
1) 
Step-by-step explanation:
12)
y - 4 = −(x - 4)
y - 4 = −x + 4
+ 4 + 4
__________

_______________________________________________
11)
y + 2 = 12(x + 2)
y + 2 = 12x + 24
- 2 - 2
____________

_______________________________________________
10)
y - 1 = 5(x - 1)
y - 1 = 5x - 5
+ 1 + 1
_________

_______________________________________________
9)
y - 5 = −2(x + 2)
y - 5 = −2x - 4
+ 5 + 5
___________

_______________________________________________
8)
y - 5 = 2(x + 2)
y - 5 = 2x + 4
+ 5 + 5
__________

_______________________________________________
7)
y + 4 = 12(x - 2)
y + 4 = 12x - 24
- 4 - 4
____________

_______________________________________________
6)
4x - 3y = −6
-4x - 4x
__________
−3y = −4x - 6
___ _____
−3 −3

_______________________________________________
5)
4x - y = 2
-4x - 4x
_______
−y = −4x + 2

_______________________________________________
4)
x - y = 0
______
−y = −x

_______________________________________________
3)
7x - 5y = 35
-7x - 7x
_________
−5y = −7x + 35
___ ______
−5 −5

_______________________________________________
2)
2x - y = 4
-2x - 2x
_______
−y = −2x + 4

_______________________________________________
1)
2x - 3y = 24
-2x - 2x
_________
−3y = −2x + 24
___ _______
−3 −3

I am delighted to assist you anytime.
X to the second power equals 14 is the same as:

we can take the square root of both sides to get:

because we cannot simplify the 14 inside the square root symbol, our final answer is
Answer:
D. 10
Step-by-step explanation:
The chord is bisected as shown by the perpendicular lines and right angle, so both segments are 6.
Draw a radius from the center to the end of the chord to create a right triangle. 8 and 6 are the legs, use pythagorean theorem to find the length of the segment you drew because its the hypotenuse.
8^2+6^2=x^2
64+36
100
square root of 100 is 10
So, 10 is the length of the segment. Both the x segment and the 10 segment are radii because they are draw from the center to a point on the circle.
They are equal.
x=10