Answer:
$87,461
Step-by-step explanation:
Given that the dimensions or sides of lengths of the triangle are 119, 147, and 190 ft
where S is the semi perimeter of the triangle, that is, s = (a + b + c)/2.
S = (119 + 147 + 190) / 2 = 456/ 2 = 228
Using Heron's formula which gives the area in terms of the three sides of the triangle
= √s(s – a)(s – b)(s – c)
Therefore we have = √228 (228 - 119)(228 - 147)(228 - 190)
=> √228 (109)(81)(38)
= √228(335502)
=√76494456
= 8746.1109071 * $10
= 87461.109071
≈$87,461
Hence, the value of a triangular lot with sides of lengths 119, 147, and 190 ft is $87,461.
Answer:
.
Step-by-step explanation:
We have been given that a sphere has a radius of 8 centimeters. A second sphere has a radius of 2 centimeters. We are asked to find the difference of the volumes of the spheres.
We will use volume formula of sphere to solve our given problem.
, where r is radius of sphere.
The difference of volumes would be volume of larger sphere minus volume of smaller sphere.





Therefore, the difference between volumes of the spheres is
.
Point slope form is y - y1 = m(x-x1)
So,
y - (-1) = 2(x - 1)
y + 1 = 2x -2 or y + 1 = 2(x -1)
Hope this helps :)