Answer:
e. Red segregated from brown in meiosis I, and straight segregated from curled in meiosis I.
Explanation:
A cross between two flies heterozygous for both genes produced an offspring with the phenotypic ratio of 9:3:3:1. This ratio is expected according to Mendel's law of independent assortment, which states that alleles of the same gene assort independently during gamete formation.
Before meiosis starts in flies, a single diploid cell duplicates its DNA, so each chromosome has 2 sister chromatids that contain the same information.
- During meiosis I, <u>the homologous chromosomes separate</u> into two daughter cells. The chromosome number is reduced by half, but each chromosome has two sister chromatids.
- During meiosis II, <u>the sister chromatids separate</u> and each daughter cell from meiosis I divides into two new daughter cells (to get the total of 4 haploid cells).
In a heterozygous fly, each homologous chromosome contains a different allele, and the sister chromatids are copies that carry the same allele. For that reason, both traits were segregated during meiosis I.
Answer: 1/4
Explanation:
Firstly, in order for both parents to be type A and have children with type o blood, their blood types must both be Ao. Since o is a recessive blood type, a punnett square shows there is a 25% chance any child of theirs will have type o blood. If neither parent is color blind and they have a son who is, it implies that the mother is a carrier of colorblindness and has the genotype XᴮXᵇ. If you do a punnett square of the not colorblind father (XᴮY) and the mother, it shows that a daughter would have a 0% chance of being colorblind. Therefore colorblindess is irrelevent, since there is no possibility of the daughter not having normal color vision. In conclusion, there's a 25% chance she will have type o blood and not be colorblind, since the other 75% chance would be having type A blood and not being colorblind.
Answer:
Most restriction enzymes recognize sequences of 20-25 bp in length
Explanation:
Sequences of DNA that are recognized by restriction enzymes are called recognition (or restriction) sites are usually are between 4 and 8 bases long. Many of them are palindromic, which means that they are the same when you read it backwards and forwards (mirror-like).
Restriction enzymes are endonucleases, which means they cut phosphodiiester bonds within DNA. These enzymes are from prokaryotic organisms (archea and bacteria) which use them as defending mechanism against viruses. Prokaryotes protect their own DNA via methylation, performed by methyltransferase.
thin walls.
a moist inner surface.
a huge combined surface area.
Answer:
Hawk is the correct answer. Hope it helps!