The solution to the binomial expression by using Pascal's triangle is:



<h3>How can we use Pascal's triangle to expand a binomial expression?</h3>
Pascal's triangle can be used to calculate the coefficients of the expansion of (a+b)ⁿ by taking the exponent (n) and adding the value of 1 to it. The coefficients will correspond with the line (n+1) of the triangle.
We can have the Pascal tree triangle expressed as follows:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
--- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
From the given information:
The expansion of (3x-4y)^11 will correspond to line 11.
Using the general formula for the Pascal triangle:

The solution to the expansion of the binomial (3x-4y)^11 can be computed as:



Learn more about Pascal's triangle here:
brainly.com/question/16978014
#SPJ1
<h3>
Answer:</h3>
6 hours
<h3>
Step-by-step explanation:</h3>
The two hoses together take 1/3 the time (4/12 = 1/3), so the two hoses together are equivalent to 3 of the first hose.
That is, the second hose is equivalent to 2 of the first hose. Two of the first hose could fill the vat in half the time one of them can, so 6 hours.
The second hose alone can fill the vat in 6 hours.
_____
The first hose's rate of doing work is ...
... (1 vat)/(12 hours) = (1/12) vat/hour
If h is the second hose's rate of doing work, then working together their rate is ...
... (1/12 vat/hour) + h = (1/4 vat/hour)
... h = (1/4 - 1/12) vat/hour = (3/12 -1/12) vat/hour = 2/12 vat/hour
... h = 1/6 vat/hour
so will take 6 hours to fill 1 vat.
Answer:
second one is 3, the last one is 4560
Step-by-step explanation:
Answer:
use formula when diameter is given
circumference of circle =πd
and
when radius is given
circumference of circle=2πr
hope this help
- 6π inch
- 18πcm
- 15π ft
- 8π m
- 12π ft
- 4π yd
we are given
A woman walks due east on the deck of a ship at 4 mi/h.
the ship is moving south at a speed of 24 mi/h
so, firstly, we will draw diagram
so, we have


now, we can use Pythagoras theorem

now, we can plug values
and we get


so,
the speed of the woman relative to the surface of the water is 24.33 mi/h .......Answer