9514 1404 393
Answer:
(d) 12.3
Step-by-step explanation:
From the Law of Cosines, you can solve for c:
c = √(a² +b² -2ab·cos(C)) = √(22.09 +104.2441 -95.974cos(105.3°))
c ≈ √151.659 ≈ 12.31499
Side c is about 12.3 units long.
I would say j but i can’t get my mind on which one
ok
12<em>u</em><em>j</em><em>a</em><em>j</em><em>a</em><em>j</em><em>w</em><em>j</em><em>d</em><em>j</em><em>e</em><em>j</em><em>w</em><em>e</em><em>j</em><em>w</em><em>i</em><em>q</em><em>k</em><em>j</em><em>s</em>
Answer:
Step-by-step explanation:
when x=0,sin x=0
when x=30° or π/6
sinx=1/2=0.5
when x=45° or π/4
sin x=√2/2≈1.414/2≈0.707
when x=60° or π/3
sinx=√3/2≈1.732/2≈0.866
when x=90° or π/2
sin x=1
when x=120° 2π/3
sin 120=sin (180-60)=sin 60 ≈0.866
when x=135° or 3π/4
sin 135=sin (180-45)=sin 45≈0.707
when x=150° or 5π/6
sin 150=sin (180-30)=sin 30=0.5
when x=180 or π
sin 180=sin(180-0)=sin 0=0
when x=210° or 7π/6
sin 210=sin (180+30)=-sin 30=-0.5
when x=225° or 5π/4
sin x=sin (180+45)=-sin 45≈-0.707
when x=240° or 4π/3
sin 240=sin (180+60)=-sin 60≈ -0.866
when x=270° or 3π/2
sin 270=sin (180+90)=-sin 90=-1
when x=300° or 5π/3
sin 300=sin(360-60)=-sin 60≈ -0.866
when x=315°or 7π/4
sin 315=sin (360-45)= -sin 45≈ -0.707
when x=330° or 13π/6
sin 330=sin (360-30)= -sin 30 =-0.5
when x=360 or 2π
sin (360)=sin (360+0)=sin 0=0
plot all these points on the graph,you get the reqd. graph.
you see it starts on (0,0)
sometimes
the description is describing SSA, which is NOT a type of congruence.
since the congruent angle is non-included (which means it is not in between the two congruent sides), we can't say for sure if the triangles are congruent.
this is because the third side of the triangle is unknown, and that side might not be congruent to the same side in the other triangle.
i hope this helps!