Idk sorry I’ll look it up soon tho Maybe
Answer:
y-3x-9=0
Step-by-step explanation:
(x1,y1)=(-3,0)and (x2,y2)=(-2,3)
Now,
y-y1=(y2-y1)/(x2-x1) (x-x1)
y-0=3-0/-2-(-3) (x-(-3))
y-0=3/1 (x+3)
y=3x+9
y-3x-9=0
Answer:
emma is dum as freak
Step-by-step explanation:
.................................................
Hello!
The formula for the area of a sector can be written as follows:
Area =


(R)
In the above formula, “r” represents the
radius while “R” represents
the radian measure of a sector. The radius is given to us in the image above as 10 inches. However, we still need the radian measure of the two sectors. To find this measure, we can use the following conversion:
1 degree =

radians
Because the two sectors have a given measure of 72 degrees, we need to multiply both sides of the above conversion by 72:
72 degrees =

Reduce the fraction on the right side of the equation:
72 degrees =

We now have the radian measure of both sectors. Now simply insert this and any other known values into the “area of a sector” formula above:
Area =


(

)
Simplify the right side of the equation to get the following answer:
Area = 20 pi
We have now proven that
the area of one sector is equal to 20 pi.If, however, you need the combined area of the two identical sectors, simply multiply the proven area by 2 to get a total area of
40 pi.I hope this helps!
Answer:
The lower bound is,
and the upper bound is
.
Step-by-step explanation:
Let the random variable <em>X</em> follows a normal distribution with mean <em>μ </em>and standard deviation <em>σ</em>.
The the random variable <em>Z, </em>defined as
is standardized random variable also known as a standard normal random variable. The random variable
.
The standard normal random variable has a symmetric distribution.
It is provided that
.
Determine the upper and lower bound as follows:
![P(-z\leq Z\leq z)=0.51\\P(Z\leq z)-P(Z\leq -z)=0.51\\P(Z\leq z)-[1-P(Z\leq z)]=0.51\\2P(Z\leq z)-1=0.51\\2P(Z\leq z)=1.51\\P(Z\leq z)=0.755](https://tex.z-dn.net/?f=P%28-z%5Cleq%20Z%5Cleq%20z%29%3D0.51%5C%5CP%28Z%5Cleq%20z%29-P%28Z%5Cleq%20-z%29%3D0.51%5C%5CP%28Z%5Cleq%20z%29-%5B1-P%28Z%5Cleq%20z%29%5D%3D0.51%5C%5C2P%28Z%5Cleq%20z%29-1%3D0.51%5C%5C2P%28Z%5Cleq%20z%29%3D1.51%5C%5CP%28Z%5Cleq%20z%29%3D0.755)
Use a standard normal table to determine the value of <em>z.</em>
The value of <em>z</em> such that P (Z ≤ z) = 0.755 is 0.69.
The lower bound is,
and the upper bound is
.