1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yarga [219]
3 years ago
7

Please help me to prove this!​

Mathematics
1 answer:
Sophie [7]3 years ago
5 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B = C                → A = C - B

                                          → B = C - A

Use the Double Angle Identity:     cos 2A = 2 cos² A - 1

                                             → (cos 2A + 1)/2 = cos² A

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · 2 cos [(A - B)/2]

Use Even/Odd Identity: cos (-A) = cos (A)

<u>Proof LHS → RHS:</u>

LHS:                     cos² A + cos² B + cos² C

\text{Double Angle:}\qquad \dfrac{\cos 2A+1}{2}+\dfrac{\cos 2B+1}{2}+\cos^2 C\\\\\\.\qquad \qquad \qquad =\dfrac{1}{2}\bigg(2+\cos 2A+\cos 2B\bigg)+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\dfrac{1}{2}\bigg(\cos 2A+\cos 2B\bigg)+\cos^2 C

\text{Sum to Product:}\quad 1+\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\cos (A+B)\cdot \cos (A-B)+\cos^2 C

\text{Given:}\qquad \qquad 1+\cos C\cdot \cos (A-B)+\cos^2C

\text{Factor:}\qquad \qquad 1+\cos C[\cos (A-B)+\cos C]

\text{Sum to Product:}\quad 1+\cos C\bigg[2\cos \bigg(\dfrac{A-B+C}{2}\bigg)\cdot \cos \bigg(\dfrac{A-B-C}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+(C-B)}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-(C-A)}{2}\bigg)

\text{Given:}\qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+A}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-B}{2}\bigg)\\\\\\.\qquad \qquad \qquad =1+2\cos C \cdot \cos A\cdot \cos (-B)

\text{Even/Odd:}\qquad \qquad 1+2\cos C \cdot \cos A\cdot \cos B\\\\\\.\qquad \qquad \qquad \quad =1+2\cos A \cdot \cos B\cdot \cos C

LHS = RHS: 1 + 2 cos A · cos B · cos C = 1 + 2 cos A · cos B · cos C   \checkmark

You might be interested in
The Hickory Stick has a selection of 3 meats and 6 vegetables. How many different selections of one meat and one vegetable are p
valentina_108 [34]

The <u>different</u> selections of<u> one</u> meat and <u>one</u> vegetable are possible are 18 selections.

Since the Hickory Stick has a selection of 3 meats and 6 vegetables, the number of ways we can select <u>one </u>meat out of 3 is ³C₁ = 3.

Also, the number of ways we can select <u>one </u>vegetable out of 6 is ⁶C₁ = 6.

So, the total number of selections of <u>one</u> meat and <u>one</u> vegetable is ³C₁ × ⁶C₁ = 3 × 6

= 18 selections

So, the <u>different</u> selections of<u> one</u> meat and <u>one</u> vegetable are possible are 18 selections.

Learn more about combination here:

brainly.com/question/19341024

7 0
2 years ago
Solve the inequality. Graph the solution
Evgen [1.6K]

Answer:

<em>t ≥ -12 </em>

Step-by-step explanation:

4 ≥ -t/3 Original Equation

4 <em>(3</em>) ≥ -t/3 <em>(3) </em>Cancel out the division

12 ≥ -t

12 <em>(-1)</em> ≥ -t<em> (-1) </em>Canceling Negative on the variable, Flipping over Inequality Sign

<em>t ≥ -12 </em>

3 0
3 years ago
Read 2 more answers
(Urgent) Worth 15 points 7.3
Stella [2.4K]

Answer: 20790

Step-by-step explanation:

5 0
3 years ago
Which The following radical functions is graphed below
maks197457 [2]

Answer:

Option A

Step-by-step explanation:

From the graph attached,

Vertical asymptote of the given function → x = -4

Horizontal asymptote → y = 0

Oblique asymptote → None

Therefore, graph that has been given in the picture is,

F(x) = \frac{1}{(x+4)^2}

Option (A) will be the answer.

5 0
3 years ago
Does anybody know the answers to these? will mark brainliest!
jeyben [28]

Answer:

1.

Tan 45=√2/n

n=√2

again

sin 45=√2/m

m=2

answer:<u> </u><u>m</u><u>=</u><u>2</u><u>,</u><u>n</u><u>=</u><u>√</u><u>2</u>

<u>2</u><u>.</u>

sin 45=x/3

x=3/√2=3√2/2

y=3√2/2

<u>a</u><u>n</u><u>s</u><u>:</u><u>x</u><u>=</u><u>3√2/2</u><u>,</u><u>y</u><u>=</u><u>3√2/</u><u>3</u>

<u>3</u><u>.</u>

sin 45=a/4

a=4/√2

b=4/√2

ans:<u>a</u><u>=</u><u>4</u><u>/</u><u>√</u><u>2</u><u>,</u><u>b</u><u>=</u><u>4</u><u>/</u><u>√</u><u>2</u>

4.

b=4 base sides of isosceles triangle

sin 45=4/a

a=4√2

ans:<u>a</u><u>=</u><u>4</u><u>√</u><u>2</u><u> </u><u>and</u><u> </u><u>b</u><u>=</u><u>4</u>

5 0
3 years ago
Other questions:
  • At Sara's birthday party, 15 guests are sharing 3/5 of a gallon of Liquid Soap Bubbles. What fraction of the liquid is available
    15·2 answers
  • The number of a checking account is also known as a(n) _____.
    10·2 answers
  • There are 101 students, each student will need 2/3 cup baking soda for an experiment. If Ms.Keough has 60 cups, will she have en
    5·1 answer
  • Slope-intercept of 5x-7y=-45
    11·1 answer
  • An online seed supplier packages a seed mix that costs the company $20.70 per pound. The mix includes poppy seeds costing $24.00
    14·1 answer
  • What is greater than 786.2 and less than 786.3 as a decimal
    8·2 answers
  • A car travel 252 mile on 9 gallons of gasoline. How many gallons of gas will it need to go 140 miles
    5·1 answer
  • Look at the photo to see the question. if you can pls help!!
    13·1 answer
  • -9(y+12)=4(-7y-8)<br> Solve for y
    12·1 answer
  • Hello could someone help me
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!