To find the solutions to this equation, we can apply the quadratic formula. This quadratic formula solves equations of the form ax^2 + bx + c = 0
x = [ -b ± √(b^2 - 4ac) ] / (2a)
x = [ -5 ± √((5)^2 - 4(-11)(-3)) ] / ( 2(-11) )
x = [-5 ± √(25 - (132) ) ] / ( -22 )
x = [-5 ± √(-107) ] / ( -22)
Since we conclude that √-107 is nonreal, the answer to this question is that there are no real solutions.
Answer:
None of the above.........
The demand equation illustrates the price of an item and how it relates to the demand of the item.
- The slope of the demand function is -1/2
- The equation of the demand function is:

- The price that maximizes her revenue is: Ghc 85
From the question, we have:


The number of plates (x) decreases by 10, while the price (y) increases by 5. The table of value is:

The slope (m) is calculated using:

So, we have:



The equation of the demand is as follows:
The initial number of plates (300) decreases by 10 is represented as: (300 - 10x).
Similarly, the initial price (20) increases by 5 is represented as: (20 + 5x).
So, the demand equation is:

Open the brackets to calculate the maximum revenue


Equate to 0

Differentiate with respect to x

Collect like terms

Divide by 100

So, the price at maximum revenue is:



In conclusion:
- The slope of the demand function is -1/2
- The equation of the demand function is:

- The price that maximizes her revenue is: Ghc 85
Read more about demand equations at:
brainly.com/question/21586143