Answer: B) Predator/prey
=========================================================
Explanation:
The lynx is the predator that hunts and eats the snowshoe hare, which is the prey.
The graph shows that when the hare population is large, so is the predator population because they rely on the hares as a source of food. However, the more predators there are, the less prey there will be. This causes the prey population to decrease. In turn, this decrease causes the predator population to decrease as well. If there's less food, then some of the lynx population will starve to death.
At some point, the hare population will rebound and go back up due to less predators eating them. They have a better chance to survive. As the hare population goes up, so does the lynx population. They're both strongly linked together, and we have this cyclic pattern the graph indicates. You could say this is "the cycle of life" or "cycle of nature" so to speak.
This is a very simplistic viewpoint because it does not account for other factors such as other predators and other prey, and it also doesn't take account of things like habitat loss for instance. Despite that, such predator-prey models are still useful to understand the connection between the two species.
Answer:
A niche is a way that a population uses the living and nonliving resources of its habitat.
Explanation:
A niche is the role a population has in it's habitat, and the second option is the best one that matches.
Answers:
1. Facilitated diffusion: the process by which some molecules that are not able to pass directly through a cell membrane are able to enter the cell with the aid of transport proteins.
2. Osmosis: the diffusion of water molecules through a selectively permeable membrane.
3. Diffusion: the spreading out of molecules across a cell membrane until to they are equally concentrated.
Step-by-step explanation:
Diffusion is the spontaneous movement of molecules across a membrane from an area of high concentration to one of low concentration gradient.
Osmosis is the diffusion of water molecules across a semipermeable membrane from an area of low solute concentration to one of high solute concentration.
Facilitated transport occurs when molecules cannot diffuse directly through a cell membrane but can diffuse down a concentration gradient through transport channels in the membrane.
Answer:
Haemoglobin; liver; binds; stored; bile duct; small intestine; lipids.
Explanation:
Serology can be defined as the study of blood and the reactions between antibodies and antigens in the blood.
In Biology, blood pH can be defined as a measure of the hydrogen ion (H¯) concentration of blood i.e the level of alkalinity or acidity of blood.
Basically, the normal blood pH of a human being should be between 7.35 and 7.45.
Hence, one of the ways in which the body regulates blood pH is with proteins. Proteins help regulate blood pH by accepting and releasing hydrogen ions. Typically, when the blood pH falls, the hydrogen ions (H¯) are accepted (absorbed) while hydrogen ions are released when the blood pH rises.
For example, a protein such as haemoglobin which makes up a composition of the red blood cells, binds an amount of acid required to regulate blood pH.
In the spleen, haemoglobin from red blood cells is broken down to form (unconjugated) bilirubin. Unconjugated bilirubin is insoluble in blood plasma so binds to albumens in the blood and is sent to the liver. Bilirubin binds with glucuronic acid to form conjugated bilirubin. It forms part of the bile, which is stored in the gall bladder. Food in the gut stimulates gall bladder contraction and the bile passes down the bile duct to the small intestine, where it aids in the digestion of lipids.