1- Solution using graphs:Take a look at the attached images.
The red graph represents the first given function while the blue graph represents the second given function.
We can note that the two graphs are the same line (they overlap).
This means that any chosen point on one of them will satisfy the other.
This means that there are infinite number of solutions to these two equations.
2- Solution using substitution:The first given equation is:
y = -5x + 3 ...........> equation I
The second given equation is:
2y + 10x = 6 ...........> equation II
Substitute with I in II and solve as follows:
2(-5x+3) + 10x = 6
-10x + 6 + 10x = 6
0 = 0
This means that there are infinitely many solutions to the given system of equations.
Hope this helps :)
F(x)=(x-8)/7
<span>g(x) = 7x + 8
</span>g(f(x))-------------- > 7*((x-8)/7)+8----------- >x-8+8=x
the answer is x
Answer:
333.3 meters per minute
Step-by-step explanation:
<u>The best way to solve this problem is using </u><u>dimensional anaysis</u><u>. First, we write out our starting units, that being 20km/1hr. We have to keep in mind that we want to change the kilometers to meters and the hours to minutes.</u>

<u>We know that there are 1000 meters in 1 kilometer. We add this to the dimensional analysis as 1000m/1km. We write it as this because we want the kilometers to cancel each other out. We only want the meters.</u>

<u>We also know that 1 hour is 60 minutes. We add this to the analysis as well so that the hours cancel each other.</u>

<u>We now solve this expression. Since both the kilometers and the hours cancel out, we have meters per minute as our unit. All that's left are the numbers.</u>
= (20*1000*1)/(1*1*60) m/min
= 333.3 meters per minute
Answer:
$13.77
Step-by-step explanation:
To find what one yard would cost you would take the price and divide it by the number of yards. In this case, 1 yard happens to cost $4.59. You then multiply 4.59 times 3 to get 13.77
5p+1.49-2p-6.49
Combine like terms
3p+1.49-6.49
=3p-5