1. Add -4.5 to 18.5
2. Divide 23 by 7
3. Then subtract 6 from -2.7
Answer:
UW ≈ 6.55 ≈ 7
Step-by-step explanation:
cos (35) = adjacent/hypotenuse
cos(35) = UW/VW
cos(35) = UW/8
8*cos(35) = UW
UW ≈ 6.55
Hope this helped! <3
9514 1404 393
Answer:
a) w(4w-15)
b) w²
c) w(4w -15) = w²
d) w = 5
e) 5 by 5
Step-by-step explanation:
a) If w is the width, and the length is 15 less than 4 times the width, then the length is 4w-15. The area is the product of length and width.
A = w(4w -15)
__
b) If w is the side length, the area of the square is (also) the product of length and width:
A = w²
__
c) Equating the expressions for area, we have ...
w(4w -15) = w²
__
d) we can subtract the right side to get ...
4w² -15w -w² = 0
3w(w -5) = 0
This has solutions w=0 and w=5. Only the positive solution is sensible in this problem.
The side length of the square is 5 units.
__
e) The rectangle is 5 units wide, and 4(5)-15 = 5 units long.
The rectangle and square have the same width and the same area, so the rectangle must be a square.
Answer:
1. 15x^7y^2 + 4x^3 => x^3(15x^4y^2 + 4)
2. 15x^7y^2 + 3x => 3x(5x^6y^2 + 1)
3. 15x^7y^2 + 6xy => 3xy(5x^6y + 2)
4. 15x^7 + 10y^2 => 5(3x^7 + 2y^2)
Step-by-step explanation:
To obtain the answer to the question, first let us factorise each expression. This is illustrated below:
1. 15x^7y^2 + 4x^3
Common factor is x^3, therefore the expression is written as:
x^3(15x^4y^2 + 4)
2. 15x^7y^2 + 3x
Common factor is 3x, therefore the expression is written as:
3x(5x^6y^2 + 1)
3. 15x^7y^2 + 6xy
Common factor is 3xy, therefore the expression is written as:
3xy(5x^6y + 2)
4. 15x^7 + 10y^2
Common factor is 5, therefore the expression can be written as:
5(3x^7 + 2y^2)
He needs 4 boxes :)
Dozen= 12
48 ÷12=4