<span>$100.00 rounded value
$105.00 rounded value
$110.00 rounded value
For example,
14,494 </span>
<span>To round off the height value to the nearest thousand we can use the expanded from to clarity the position of numbers which is: </span>
<span>10, 000 = ten thousand </span>
<span>4, 000 = thousands </span>
<span>400 = hundreds </span>
<span>90 = tens </span>
<span>4 = ones </span>
<span>Here we can notice than four thousand is the value where the nearest thousands is placed. Hence we can round off the number of 14, 494 into 14, 000. Notice 0-4 rounding off rules.<span>
</span></span>
Answer:

Step-by-step explanation:
How do we find the line that's perpendicular to another?
We find the negative reciprocal. So for example if our slope is 2, the negative reciprocal would be
.
Answer: -9.5, -.82, 8/10, 2.5
Step-by-step explanation:
-9.5 is the least because the bigger the negative number is the smaller it's value is (opposite of positive numbers)
-.82 same thing
8/10 or .8
2.5 same thing as 2.50 so what is greater $2.50 or $0.80 exactly 2.50 is greater so it's the greatest
Answer:
NO amount of hour passed between two consecutive times when the water in the tank is at its maximum height
Step-by-step explanation:
Given the water tank level modelled by the function h(t)=8cos(pi t /7)+11.5. At maximum height, the velocity of the water tank is zero
Velocity is the change in distance with respect to time.
V = {d(h(t)}/dt = -8π/7sin(πt/7)
At maximum height, -8π/7sin(πt/7) = 0
-Sin(πt/7) = 0
sin(πt/7) = 0
Taking the arcsin of both sides
arcsin(sin(πt/7)) = arcsin0
πt/7 = 0
t = 0
This shows that NO hour passed between two consecutive times when the water in the tank is at its maximum height
Step-by-step explanation:
We have given,
A rational function : f(x) = 
W need to find :
Point of discontinuity : - At x = 4, f(x) tends to reach infinity, So we get discontinuity point at x =4.
For no values of x, we get indetermined form (i.e
), Hence there is no holes
Vertical Asymptotes:
Plug y=f(x) = ∞ in f(x) to get vertical asymptote {We can us writing ∞ =
}
i.e ∞ = 
or 
or x-4 =0
or x=4, Hence at x = 4, f(x) has a vertical asymptote
X -intercept :
Plug f(x)=0 , to get x intercept.
i.e 0 = 
or x - 2 =0
or x = 2
Hence at x=2, f(x) has an x intercept
Horizontal asymptote:
Plug x = ∞ in f(x) to get horizontal asymptote.
i.e f(x) =
= 
or f(x) = 
or f(x) = 1 = y
hence at y =f(x) = 1, we get horizontal asymptote