Answer: D) the significance level of the test
=======================================================
Explanation:
The significance level of the test, also known as "alpha", is the probability of making a type 1 error. A type 1 error is where you reject the null hypothesis but it was true all along.
The null hypothesis is where we test a certain probability distribution (eg: normal distribution). Specifically we gather a sample of values and compute the test statistic. If the probability of getting that test statistic or more extreme is smaller than alpha, then we reject the null. This probability value is known as the p-value.
If you lower the alpha value, then that will make it more likely you do not reject the null. Consider an example where alpha = 0.10 to start with. If you get a p-value of 0.02, then you would reject the null. The same would apply for alpha = 0.05; however, with alpha = 0.01, the p-value is no longer smaller than alpha. At this point we do not reject the null. Your textbook may use the phrasing "fail to reject the null".
Going in the opposite direction, increasing the alpha value will make it more likely to reject the null. Each time you adjust the alpha value, keep the p-value to some fixed number (between 0 and 1).
Answer:
plz ion know what is the awnser to mine
Step-by-step explanation:
Answer:
6 weeks
Step-by-step explanation:
6*5=30
100+30=130
20*6=120
120+10=130
130=130
Answer: Angle A = 53.9 degrees
Step-by-step explanation: We have a right angled triangle with two sides clearly given and one angle to be calculated. If the angle to be calculated is angle A, then having angle A as our reference angle, line AC (10 units) is the adjacent, line CB is the opposite while line AB (17 units) is the hypotenuse. Having been given the adjacent and the hypotenuse, we can now use the trigonometric ratio as follows;
CosA = adjacent/hypotenuse
CosA = 10/17
CosA = 0.5882
By use of the calculator or table of values,
A = 53.97
Approximately to the nearest tenth,
A = 53.9 degrees