Answer:
![y_g(t) = c_1*( 2t - 1 ) + c_2*e^(^-^2^t^) - e^(^-^2^t^)* [ t^3 + \frac{3}{4}t^2 + \frac{3}{4}t ]](https://tex.z-dn.net/?f=y_g%28t%29%20%3D%20c_1%2A%28%202t%20-%201%20%29%20%2B%20c_2%2Ae%5E%28%5E-%5E2%5Et%5E%29%20-%20e%5E%28%5E-%5E2%5Et%5E%29%2A%20%5B%20t%5E3%20%2B%20%5Cfrac%7B3%7D%7B4%7Dt%5E2%20%2B%20%5Cfrac%7B3%7D%7B4%7Dt%20%5D)
Step-by-step explanation:
Solution:-
- Given is the 2nd order linear ODE as follows:

- The complementary two independent solution to the homogeneous 2nd order linear ODE are given as follows:

- The particular solution ( yp ) to the non-homogeneous 2nd order linear ODE is expressed as:

Where,
are linearly independent functions of parameter ( t )
- To determine [
], we will employ the use of wronskian ( W ).
- The functions [
] are defined as:
![u_1(t) = - \int {\frac{F(t). y_2(t)}{W [ y_1(t) , y_2(t) ]} } \, dt \\\\u_2(t) = \int {\frac{F(t). y_1(t)}{W [ y_1(t) , y_2(t) ]} } \, dt \\](https://tex.z-dn.net/?f=u_1%28t%29%20%3D%20-%20%5Cint%20%7B%5Cfrac%7BF%28t%29.%20y_2%28t%29%7D%7BW%20%5B%20y_1%28t%29%20%2C%20y_2%28t%29%20%5D%7D%20%7D%20%5C%2C%20dt%20%5C%5C%5C%5Cu_2%28t%29%20%3D%20%20%5Cint%20%7B%5Cfrac%7BF%28t%29.%20y_1%28t%29%7D%7BW%20%5B%20y_1%28t%29%20%2C%20y_2%28t%29%20%5D%7D%20%7D%20%5C%2C%20dt%20%5C%5C)
Where,
F(t): Non-homogeneous part of the ODE
W [ y1(t) , y2(t) ]: the wronskian of independent complementary solutions
- To compute the wronskian W [ y1(t) , y2(t) ] we will follow the procedure to find the determinant of the matrix below:
- Now we will evaluate function. Using the relation given for u1(t) we have:
![u_1 (t ) = - \int {\frac{6t^2*e^(^-^2^t^) . ( e^-^2^t)}{-4t*e^(^-^2^t^)} } \, dt\\\\u_1 (t ) = \frac{3}{2} \int [ t*e^(^-^2^t^) ] \, dt\\\\u_1 (t ) = \frac{3}{2}* [ ( -\frac{1}{2} t*e^(^-^2^t^) - \int {( -\frac{1}{2}*e^(^-^2^t^) )} \, dt] \\\\u_1 (t ) = -e^(^-^2^t^)* [ ( \frac{3}{4} t + \frac{3}{8} )] \\\\](https://tex.z-dn.net/?f=u_1%20%28t%20%29%20%3D%20-%20%5Cint%20%7B%5Cfrac%7B6t%5E2%2Ae%5E%28%5E-%5E2%5Et%5E%29%20.%20%28%20e%5E-%5E2%5Et%29%7D%7B-4t%2Ae%5E%28%5E-%5E2%5Et%5E%29%7D%20%7D%20%5C%2C%20dt%5C%5C%5C%5Cu_1%20%28t%20%29%20%3D%20%20%5Cfrac%7B3%7D%7B2%7D%20%5Cint%20%5B%20t%2Ae%5E%28%5E-%5E2%5Et%5E%29%20%5D%20%5C%2C%20dt%5C%5C%5C%5Cu_1%20%28t%20%29%20%3D%20%20%5Cfrac%7B3%7D%7B2%7D%2A%20%5B%20%28%20-%5Cfrac%7B1%7D%7B2%7D%20t%2Ae%5E%28%5E-%5E2%5Et%5E%29%20-%20%5Cint%20%7B%28%20-%5Cfrac%7B1%7D%7B2%7D%2Ae%5E%28%5E-%5E2%5Et%5E%29%20%29%7D%20%5C%2C%20dt%5D%20%20%5C%5C%5C%5Cu_1%20%28t%20%29%20%3D%20%20-e%5E%28%5E-%5E2%5Et%5E%29%2A%20%5B%20%28%20%5Cfrac%7B3%7D%7B4%7D%20t%20%2B%20%20%5Cfrac%7B3%7D%7B8%7D%20%29%5D%20%20%5C%5C%5C%5C)
- Similarly for the function u2(t):
![u_2 (t ) = \int {\frac{6t^2*e^(^-^2^t^) . ( 2t-1)}{-4t*e^(^-^2^t^)} } \, dt\\\\u_2 (t ) = -\frac{3}{2} \int [2t^2 -t ] \, dt\\\\u_2 (t ) = -\frac{3}{2}* [\frac{2}{3}t^3 - \frac{1}{2}t^2 ] \\\\u_2 (t ) = t^2 [\frac{3}{4} - t ]](https://tex.z-dn.net/?f=u_2%20%28t%20%29%20%3D%20%20%5Cint%20%7B%5Cfrac%7B6t%5E2%2Ae%5E%28%5E-%5E2%5Et%5E%29%20.%20%28%202t-1%29%7D%7B-4t%2Ae%5E%28%5E-%5E2%5Et%5E%29%7D%20%7D%20%5C%2C%20dt%5C%5C%5C%5Cu_2%20%28t%20%29%20%3D%20%20-%5Cfrac%7B3%7D%7B2%7D%20%5Cint%20%5B2t%5E2%20-t%20%5D%20%5C%2C%20dt%5C%5C%5C%5Cu_2%20%28t%20%29%20%3D%20%20-%5Cfrac%7B3%7D%7B2%7D%2A%20%5B%5Cfrac%7B2%7D%7B3%7Dt%5E3%20-%20%5Cfrac%7B1%7D%7B2%7Dt%5E2%20%20%5D%20%20%5C%5C%5C%5Cu_2%20%28t%20%29%20%3D%20%20t%5E2%20%5B%5Cfrac%7B3%7D%7B4%7D%20-%20t%20%5D)
- We can now express the particular solution ( yp ) in the form expressed initially:
![y_p(t) = -e^(^-^2^t^)* [\frac{3}{2}t^2 + \frac{3}{4}t - \frac{3}{8} ] + e^(^-^2^t^)*[\frac{3}{4}t^2 - t^3 ]\\\\y_p(t) = -e^(^-^2^t^)* [t^3 + \frac{3}{4}t^2 + \frac{3}{4}t - \frac{3}{8} ] \\](https://tex.z-dn.net/?f=y_p%28t%29%20%3D%20%20-e%5E%28%5E-%5E2%5Et%5E%29%2A%20%5B%5Cfrac%7B3%7D%7B2%7Dt%5E2%20%2B%20%5Cfrac%7B3%7D%7B4%7Dt%20-%20%5Cfrac%7B3%7D%7B8%7D%20%5D%20%20%20%20%2B%20e%5E%28%5E-%5E2%5Et%5E%29%2A%5B%5Cfrac%7B3%7D%7B4%7Dt%5E2%20-%20t%5E3%20%5D%5C%5C%5C%5Cy_p%28t%29%20%3D%20%20-e%5E%28%5E-%5E2%5Et%5E%29%2A%20%5Bt%5E3%20%2B%20%5Cfrac%7B3%7D%7B4%7Dt%5E2%20%2B%20%5Cfrac%7B3%7D%7B4%7Dt%20-%20%5Cfrac%7B3%7D%7B8%7D%20%5D%20%5C%5C)
Where the term: 3/8 e^(-2t) is common to both complementary and particular solution; hence, dependent term is excluded from general solution.
- The general solution is the superposition of complementary and particular solution as follows: